Newer
Older
# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict
from confluent_kafka import Producer as KafkaProducer
from common.tools.kafka.Variables import KafkaConfig, KafkaTopic
from common.proto.context_pb2 import Empty
from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method
from common.proto.analytics_frontend_pb2 import Analyzer, AnalyzerId, AnalyzerFilter, AnalyzerList
from common.proto.analytics_frontend_pb2_grpc import AnalyticsFrontendServiceServicer
from analytics.database.Analyzer_DB import AnalyzerDB
from analytics.database.AnalyzerModel import Analyzer as AnalyzerModel
LOGGER = logging.getLogger(__name__)
METRICS_POOL = MetricsPool('AnalyticsFrontend', 'NBIgRPC')
class AnalyticsFrontendServiceServicerImpl(AnalyticsFrontendServiceServicer):
def __init__(self):
LOGGER.info('Init AnalyticsFrontendService')
self.kafka_producer = KafkaProducer({'bootstrap.servers' : KafkaConfig.get_kafka_address()})
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def StartAnalyzer(self,
request : Analyzer, grpc_context: grpc.ServicerContext # type: ignore
LOGGER.info ("At Service gRPC message: {:}".format(request))
self.db_obj.add_row_to_db(
AnalyzerModel.ConvertAnalyzerToRow(request)
)
response.analyzer_id.uuid = request.analyzer_id.analyzer_id.uuid
return response
def PublishStartRequestOnKafka(self, analyzer_obj):
"""
Method to generate analyzer request on Kafka.
"""
analyzer_uuid = analyzer_obj.analyzer_id.analyzer_id.uuid
analyzer_to_generate : Dict = {
"algo_name" : analyzer_obj.algorithm_name,
"input_kpis" : [k.kpi_id.uuid for k in analyzer_obj.input_kpi_ids],
"output_kpis" : [k.kpi_id.uuid for k in analyzer_obj.output_kpi_ids],
"oper_mode" : analyzer_obj.operation_mode,
"thresholds" : json.loads(analyzer_obj.parameters["thresholds"]),
"window_size" : analyzer_obj.parameters["window_size"],
"window_slider" : analyzer_obj.parameters["window_slider"],
# "store_aggregate" : analyzer_obj.parameters["store_aggregate"]
key = analyzer_uuid,
value = json.dumps(analyzer_to_generate),
callback = self.delivery_callback
)
LOGGER.info("Analyzer Start Request Generated: Analyzer Id: {:}, Value: {:}".format(analyzer_uuid, analyzer_to_generate))
self.kafka_producer.flush()
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def StopAnalyzer(self,
request : AnalyzerId, grpc_context: grpc.ServicerContext # type: ignore
) -> Empty: # type: ignore
LOGGER.info ("At Service gRPC message: {:}".format(request))
try:
analyzer_id_to_delete = request.analyzer_id.uuid
self.db_obj.delete_db_row_by_id(
AnalyzerModel, "analyzer_id", analyzer_id_to_delete
)
self.PublishStopRequestOnKafka(analyzer_id_to_delete)
LOGGER.error('Unable to delete analyzer. Error: {:}'.format(e))
"""
Method to generate stop analyzer request on Kafka.
"""
key = analyzer_uuid,
value = json.dumps(analyzer_to_stop),
callback = self.delivery_callback
)
LOGGER.info("Analyzer Stop Request Generated: Analyzer Id: {:}".format(analyzer_uuid))
self.kafka_producer.flush()
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def SelectAnalyzers(self,
filter : AnalyzerFilter, contextgrpc_context: grpc.ServicerContext # type: ignore
LOGGER.info("At Service gRPC message: {:}".format(filter))
try:
rows = self.db_obj.select_with_filter(AnalyzerModel, filter)
try:
for row in rows:
response.analyzer_list.append(
AnalyzerModel.ConvertRowToAnalyzer(row)
)
return response
except Exception as e:
LOGGER.info('Unable to process filter response {:}'.format(e))
except Exception as e:
LOGGER.error('Unable to apply filter on table {:}. ERROR: {:}'.format(AnalyzerModel.__name__, e))
def delivery_callback(self, err, msg):
if err:
LOGGER.debug('Message delivery failed: {:}'.format(err))
else:
LOGGER.debug('Message delivered to topic {:}'.format(msg.topic()))
print('Message delivered to topic {:}'.format(msg.topic()))