Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_context(struct context_t* c) {
g_assert(c);
g_free(c);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Excecution Dijkstra algorithm
*
* @param srcMapIndex
* @param dstMapIndex
* @param g
* @param s
* @param mapNodes
* @param SN
* @param RP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void dijkstra(gint srcMapIndex, gint dstMapIndex, struct graph_t* g, struct service_t* s,
struct map_nodes_t* mapNodes, struct nodes_t* SN, struct compRouteOutputItem_t* RP,
guint arg) {
g_assert(s);g_assert(g);
// Set params into mapNodes related to the source nodes of the request
mapNodes->map[srcMapIndex].distance = 0.0;
mapNodes->map[srcMapIndex].latency = 0.0;
mapNodes->map[srcMapIndex].avaiBandwidth = 0.0;
mapNodes->map[srcMapIndex].power = 0.0;
// Initialize the set Q and S
GList *S = NULL, *Q = NULL;
gint indexVertice = -1;
// Add the source into the Q
struct nodeItem_t* nodeItem = g_malloc0(sizeof(struct nodeItem_t));
if (nodeItem == NULL) {
DEBUG_PC("memory allocation failed\n");
exit(-1);
}
// initialize some nodeItem attributes
nodeItem->distance = 0.0;
nodeItem->latency = 0.0;
nodeItem->power = 0.0;
duplicate_node_id(&mapNodes->map[srcMapIndex].verticeId, &nodeItem->node);
// Select the optimization process
if (arg & ENERGY_EFFICIENT_ARGUMENT)
Q = g_list_insert_sorted(Q, nodeItem, sort_by_energy);
// more "if" according to different optimization criteria ...
else
Q = g_list_insert_sorted(Q, nodeItem, sort_by_distance);
// Check whether there is spurNode (SN) and rootPath (RP)
if (SN != NULL && RP != NULL) {
struct routeElement_t* re;
for (gint j = 0; j < RP->numRouteElements; j++) {
// Get the source and target Nodes of the routeElement within the rootPath
re = &RP->routeElement[j];
DEBUG_PC("root Link: aNodeId: %s (%s) --> zNodeiId: %s (%s)", re->aNodeId.nodeId, re->aEndPointId, re->zNodeId.nodeId, re->zEndPointId);
// if ingress of the root link (aNodeId) is the spurNode, then stops
if (compare_node_id(&re->aNodeId, SN) == 0) {
DEBUG_PC("Ingress Node rootLink %s = spurNode %s; STOP exploring rootPath (RP)", re->aNodeId.nodeId, SN->nodeId);
break;
}
// Extract from Q
GList* listnode = g_list_first(Q);
struct nodeItem_t* node = (struct nodeItem_t*)(listnode->data);
Q = g_list_remove(Q, node);
indexVertice = graph_vertice_lookup(node->node.nodeId, g);
g_assert(indexVertice >= 0);
// Get the indexTargetedVertice
gint indexTVertice = -1;
indexTVertice = graph_targeted_vertice_lookup(indexVertice, re->zNodeId.nodeId, g);
gint done = check_link(node, indexVertice, indexTVertice, g, s, &S, &Q, mapNodes, arg);
(void)done;
// Add to the S list
S = g_list_append(S, node);
}
// Check that the first node in Q set is SpurNode, otherwise something went wrong ...
if (compare_node_id(&re->aNodeId, SN) != 0) {
DEBUG_PC ("root Link: aNodeId: %s is NOT the spurNode: %s -- something wrong", re->aNodeId.nodeId, SN->nodeId);
g_list_free_full(g_steal_pointer(&S), g_free);
g_list_free_full(g_steal_pointer(&Q), g_free);
return;
}
}
while (g_list_length(Q) > 0) {
//Extract from Q set
GList* listnode = g_list_first(Q);
struct nodeItem_t* node = (struct nodeItem_t*)(listnode->data);
Q = g_list_remove(Q, node);
DEBUG_PC("Q length: %d", g_list_length(Q));
DEBUG_PC("Explored DeviceId: %s", node->node.nodeId);
// scan all the links from u within the graph
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
indexVertice = graph_vertice_lookup(node->node.nodeId, g);
g_assert(indexVertice >= 0);
// Check the targeted vertices from u
for (gint i = 0; i < g->vertices[indexVertice].numTargetedVertices; i++) {
gint done = check_link(node, indexVertice, i, g, s, &S, &Q, mapNodes, arg);
(void)done;
}
// Add node into the S Set
S = g_list_append(S, node);
//DEBUG_PC ("S length: %d", g_list_length (S));
}
g_list_free_full(g_steal_pointer(&S), g_free);
g_list_free_full(g_steal_pointer(&Q), g_free);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief KSP computation using Dijkstra algorithm
*
* @param pred
* @param g
* @param s
* @param SN
* @param RP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint ksp_comp(struct pred_t* pred, struct graph_t* g, struct service_t* s,
struct nodes_t* SN, struct compRouteOutputItem_t* RP,
struct map_nodes_t* mapNodes, guint arg) {
g_assert(pred); g_assert(g); g_assert(s);
DEBUG_PC("SOURCE: %s --> DESTINATION: %s", s->service_endpoints_id[0].device_uuid,
s->service_endpoints_id[1].device_uuid);
// Check the both ingress src and dst endpoints are in the graph
gint srcMapIndex = get_map_index_by_nodeId(s->service_endpoints_id[0].device_uuid, mapNodes);
if (srcMapIndex == -1) {
DEBUG_PC("ingress DeviceId: %s NOT in G", s->service_endpoints_id[0].device_uuid);
return -1;
}
gint dstMapIndex = get_map_index_by_nodeId(s->service_endpoints_id[1].device_uuid, mapNodes);
if (dstMapIndex == -1) {
DEBUG_PC("egress DeviceId: %s NOT in G", s->service_endpoints_id[1].device_uuid);
return -1;
}
//DEBUG_PC("srcMapIndex: %d (node: %s)", srcMapIndex, mapNodes->map[srcMapIndex].verticeId.nodeId);
//DEBUG_PC("dstMapIndex: %d (node: %s)", dstMapIndex, mapNodes->map[dstMapIndex].verticeId.nodeId);
// Compute the shortest path route
dijkstra(srcMapIndex, dstMapIndex, g, s, mapNodes, SN, RP, arg);
// Check that a feasible solution in term of latency and bandwidth is found
gint map_dstIndex = get_map_index_by_nodeId(s->service_endpoints_id[1].device_uuid, mapNodes);
struct map_t* dest_map = &mapNodes->map[map_dstIndex];
if (!(dest_map->distance < INFINITY_COST)) {
DEBUG_PC("DESTINATION: %s NOT reachable", s->service_endpoints_id[1].device_uuid);
return -1;
}
DEBUG_PC("AvailBw @ %s is %f", dest_map->verticeId.nodeId, dest_map->avaiBandwidth);
// Check that the computed available bandwidth is larger than 0.0
if (dest_map->avaiBandwidth <= (gfloat)0.0) {
DEBUG_PC("DESTINATION %s NOT REACHABLE", s->service_endpoints_id[1].device_uuid);
DEBUG_PC("DESTINATION %s REACHABLE", s->service_endpoints_id[1].device_uuid);
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
// Handle predecessors
build_predecessors(pred, s, mapNodes);
return 1;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief set the path parameters (e.g., latency, cost, power, ...) to an under-constructed
* path from the computed map vertex
*
* @param p
* @param mapV
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void set_path_attributes(struct compRouteOutputItem_t* p, struct map_t* mapV) {
g_assert(p); g_assert(mapV);
memcpy(&p->cost, &mapV->distance, sizeof(gdouble));
memcpy(&p->availCap, &mapV->avaiBandwidth, sizeof(mapV->avaiBandwidth));
memcpy(&p->delay, &mapV->latency, sizeof(mapV->latency));
memcpy(&p->power, &mapV->power, sizeof(gdouble));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief K-CSPF algorithm execution (YEN algorithm)
*
* @param s
* @param path
* @param g
* @param optimization_flag
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void alg_comp(struct service_t* s, struct compRouteOutput_t* path, struct graph_t* g, guint arg) {
g_assert(s); g_assert(path); g_assert(g);
// create map of devices/nodes to handle the path computation using the context
struct map_nodes_t* mapNodes = create_map_node();
build_map_node(mapNodes, g);
// predecessors to store the computed path
struct pred_t* predecessors = create_predecessors();
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[0]);
struct service_endpoints_id_t* eEp = &(s->service_endpoints_id[1]);
DEBUG_PC("=======================================================================================");
DEBUG_PC("STARTING PATH COMP FOR %s[%s] --> %s[%s]", iEp->device_uuid, iEp->endpoint_uuid, eEp->device_uuid, eEp->endpoint_uuid);
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
// Compute the 1st KSP path
gint done = ksp_comp(predecessors, g, s, NULL, NULL, mapNodes, arg);
if (done == -1) {
DEBUG_PC("NO PATH for %s[%s] --> %s[%s]", iEp->device_uuid, iEp->endpoint_uuid, eEp->device_uuid, eEp->endpoint_uuid);
comp_route_connection_issue_handler(path, s);
g_free(mapNodes); g_free(predecessors);
return;
}
// Construct the path from the computed predecessors
struct compRouteOutputItem_t* p = create_path_item();
//print_predecessors(predecessors);
build_path(p, predecessors, s);
gint indexDest = get_map_index_by_nodeId(eEp->device_uuid, mapNodes);
struct map_t* dst_map = &mapNodes->map[indexDest];
// Get the delay and cost
set_path_attributes(p, dst_map);
// Add the computed path, it may be a not feasible path, but at the end it is
// checked all the feasible paths, and select the first one
print_path(p);
// Copy the serviceId
copy_service_id(&path->serviceId, &s->serviceId);
// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
for (gint i = 0; i < s->num_service_endpoints_id; i++) {
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[i]);
struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[i]);
copy_service_endpoint_id(oEp, iEp);
}
path->num_service_endpoints_id = s->num_service_endpoints_id;
DEBUG_PC("COMPUTE UP TO K Feasible Paths A[%d]", MAX_KSP_VALUE);
// Create A and B sets of paths to handle the YEN algorithm
struct path_set_t *A = create_path_set(), *B = create_path_set();
// Add 1st Computed path into A->paths[0]
duplicate_path(p, &A->paths[0]);
A->numPaths++;
g_free(predecessors); g_free(p);
for (gint k = 1; k < MAX_KSP_VALUE; k++) {
DEBUG_PC("*************************** kth (%d) ***********************************", k);
struct compRouteOutputItem_t* p = create_path_item();
duplicate_path(&A->paths[k - 1], p);
// The spurNode ranges from near-end node of the first link to the near-end of the last link forming the kth path
gint i = 0;
struct compRouteOutputItem_t* rootPath = create_path_item();
for (i = 0; i < p->numRouteElements; i++) {
struct nodes_t *spurNode = create_node(), *nextSpurNode = create_node();
struct routeElement_t* re = &(p->routeElement[i]);
// Create predecessors to store the computed path
struct pred_t* predecessors = create_predecessors();
// Clear previous mapNodes, i.e. create it again
g_free(mapNodes);
mapNodes = create_map_node();
build_map_node(mapNodes, g);
struct nodes_t* n = &re->aNodeId;
duplicate_node_id(n, spurNode);
n = &re->zNodeId;
duplicate_node_id(n, nextSpurNode);
DEBUG_PC("spurNode: %s --> nextSpurNode: %s", spurNode->nodeId, nextSpurNode->nodeId);
// rootPath contains a set of links of A[k-1] from the source Node till the SpurNode -> NextSpurNode
// Example: A[k-1] = {L1, L2, L3, L4}, i.e. " Node_a -- L1 --> Node_b -- L2 --> Node_c -- L3 --> Node_d -- L4 --> Node_e "
// E.g., for the ith iteration if the spurNode = Node_c and NextSpurNode = Node_d; then rootPath = {L1, L2, L3}
add_routeElement_path_back(re, rootPath);
DEBUG_PC("\n");
DEBUG_PC("^^^^^^^rootPath^^^^^^^");
print_path(rootPath);
// For all existing and computed paths p in A check if from the source to the NextSpurNode
// the set of links matches with those contained in the rootPath
// If YES, remove from the auxiliary graph the next link in p from NextSpurNode
// Otherwise do nothing
struct graph_t* gAux = create_graph();
duplicate_graph(g, gAux);
// Modified graph
modify_targeted_graph(gAux, A, rootPath, spurNode);
// Trigger the computation of the path from src to dst constrained to traverse all the links from src
// to spurNode contained into rootPath over the resulting graph
if (ksp_comp(predecessors, gAux, s, spurNode, rootPath, mapNodes, arg) == -1) {
DEBUG_PC("FAILED SP from %s via spurNode: %s to %s", iEp->device_uuid, spurNode->nodeId, eEp->device_uuid);
g_free(nextSpurNode); g_free(spurNode);
g_free(gAux); g_free(predecessors);
continue;
}
DEBUG_PC("SUCCESFUL SP from %s via spurNode: %s to %s", iEp->device_uuid, spurNode->nodeId, eEp->device_uuid);
// Create the node list from the predecessors
struct compRouteOutputItem_t* newKpath = create_path_item();
build_path(newKpath, predecessors, s);
DEBUG_PC("new K (for k: %d) Path is built", k);
gint indexDest = get_map_index_by_nodeId(eEp->device_uuid, mapNodes);
struct map_t* dst_map = &mapNodes->map[indexDest];
set_path_attributes(newKpath, dst_map);
DEBUG_PC("New PATH (@ kth: %d) ADDED to B[%d] - {Path Cost: %f, e2e latency: %f, bw: %f, Power: %f ", k, B->numPaths, newKpath->cost,
newKpath->delay, newKpath->availCap, newKpath->power);
// Add the computed kth SP to the heap B
duplicate_path(newKpath, &B->paths[B->numPaths]);
B->numPaths++;
DEBUG_PC("Number of B paths: %d", B->numPaths);
g_free(newKpath); g_free(nextSpurNode); g_free(spurNode);
g_free(gAux); g_free(predecessors);
}
// If B is empty then stops
if (B->numPaths == 0) {
DEBUG_PC("B does not have any path ... the stops kth computation");
break;
}
// Sort the potential B paths according to different optimization parameters
sort_path_set(B, arg);
// Add the lowest path into A[k]
DEBUG_PC("-------------------------------------------------------------");
DEBUG_PC("Append SP for B[0] to A[%d] --- Cost: %f, Latency: %f, Power: %f", A->numPaths, B->paths[0].cost,
B->paths[0].delay, B->paths[0].power);
duplicate_path(&B->paths[0], &A->paths[A->numPaths]);
A->numPaths++;
DEBUG_PC("A Set size: %d", A->numPaths);
DEBUG_PC("-------------------------------------------------------------");
// Remove/Pop front element from the path set B (i.e. remove B[0])
pop_front_path_set(B);
DEBUG_PC("B Set Size: %d", B->numPaths);
}
// Copy the serviceId
copy_service_id(&path->serviceId, &s->serviceId);
// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
for (gint m = 0; m < s->num_service_endpoints_id; m++) {
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[m]);
struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[m]);
copy_service_endpoint_id(oEp, iEp);
}
path->num_service_endpoints_id = s->num_service_endpoints_id;
// Print all the paths i A
for (gint h = 0; h < A->numPaths; h++) {
DEBUG_PC("================== A[%d] =======================", h);
print_path(&A->paths[h]);
}
DEBUG_PC("Number of paths: %d", path->numPaths);
// For all the computed paths in A, pick the one being feasible wrt the service constraints
for (gint ksp = 0; ksp < A->numPaths; ksp++) {
if (ksp >= MAX_KSP_VALUE) {
DEBUG_PC("Number Requested paths (%d) REACHED - STOP", ksp);
break;
}
gdouble feasibleRoute = check_computed_path_feasibility(s, &A->paths[ksp]);
DEBUG_PC("A[%d] available: %f, pathCost: %f; latency: %f, Power: %f", ksp, A->paths[ksp].availCap,
A->paths[ksp].cost, A->paths[ksp].delay, A->paths[ksp].power);
struct compRouteOutputItem_t* pathaux = &A->paths[ksp];
path->numPaths++;
struct path_t* targetedPath = &path->paths[path->numPaths - 1];
duplicate_path_t(pathaux, targetedPath);
print_path_t(targetedPath);
remove_path_set(A);
remove_path_set(B);
return;
}
}
remove_path_set(A);
remove_path_set(B);
// No paths found --> Issue
DEBUG_PC("K-SP failed!!!");
comp_route_connection_issue_handler(path, s);
return;