Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
//DEBUG_PC ("%s --> %s FOUND in Graph w/ edgeIndex: %d", e->aNodeId.nodeId, e->zNodeId.nodeId, edgeIndex);
// Remove the edge
//DEBUG_PC ("Start Removing %s --> %s from Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);
struct targetNodes_t *v = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex]);
for (gint j = edgeIndex; j < v->numEdges; j++) {
struct edges_t *e1 = &(v->edges[j]);
struct edges_t *e2 = &(v->edges[j+1]);
duplicate_edge (e1, e2);
}
v->numEdges --;
DEBUG_PC ("Number of Edges between %s and %s is %d", e->aNodeId.nodeId, e->zNodeId.nodeId, v->numEdges);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief create the pointer for keeping a set of the paths (struct compRouteOutput_t)
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct path_set_t * create_path_set () {
struct path_set_t * p = g_malloc0 (sizeof (struct path_set_t));
if (p == NULL) {
DEBUG_PC ("Memory allocation problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove the path set
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2021
*/
/////////////////////////////////////////////////////////////////////////////////////////
void remove_path_set(struct path_set_t* p) {
g_assert(p); g_free(p);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Create map of nodes to handle the path computation
*
* @param mapN
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_map_node (struct map_nodes_t *mapN, struct graph_t *g) {
//DEBUG_PC ("Construction of the Map of Nodes");
for (gint i = 0; i < g->numVertices; i++) {
duplicate_node_id (&g->vertices[i].verticeId, &mapN->map[i].verticeId);
mapN->map[i].distance = INFINITY_COST;
mapN->map[i].avaiBandwidth = 0.0;
mapN->map[i].latency = INFINITY_COST;
mapN->map[i].power = INFINITY_COST;
mapN->numMapNodes++;
}
//DEBUG_PC ("mapNodes formed by %d Nodes", mapN->numMapNodes);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for path of struct compRouteOutputList_t *
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputList_t * create_route_list () {
struct compRouteOutputList_t *p = g_malloc0 (sizeof (struct compRouteOutputList_t));
if (p == NULL) {
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Copy all the attributes defining a path
*
* @param dst_path
* @param src_path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_path(struct path_t* dst_path, struct path_t* src_path) {
g_assert(dst_path);
g_assert(src_path);
// Path capacity
dst_path->path_capacity.unit = src_path->path_capacity.unit;
memcpy(&dst_path->path_capacity.value, &src_path->path_capacity.value, sizeof(gdouble));
// Path latency
memcpy(&dst_path->path_latency.fixed_latency, &src_path->path_latency.fixed_latency, sizeof(gdouble));
// Path cost
duplicate_string(dst_path->path_cost.cost_name, src_path->path_cost.cost_name);
memcpy(&dst_path->path_cost.cost_value, &src_path->path_cost.cost_value, sizeof(gdouble));
memcpy(&dst_path->path_cost.cost_algorithm, &src_path->path_cost.cost_algorithm, sizeof(gdouble));
// Path links
dst_path->numPathLinks = src_path->numPathLinks;
for (gint i = 0; i < dst_path->numPathLinks; i++) {
struct pathLink_t* dPathLink = &(dst_path->pathLinks[i]);
struct pathLink_t* sPathLink = &(src_path->pathLinks[i]);
duplicate_string(dPathLink->linkId, sPathLink->linkId);
duplicate_string(dPathLink->aDeviceId, sPathLink->aDeviceId);
duplicate_string(dPathLink->zDeviceId, sPathLink->zDeviceId);
duplicate_string(dPathLink->aEndPointId, sPathLink->aEndPointId);
duplicate_string(dPathLink->zEndPointId, sPathLink->zEndPointId);
duplicate_string(dPathLink->topologyId.contextId, sPathLink->topologyId.contextId);
duplicate_string(dPathLink->topologyId.topology_uuid, sPathLink->topologyId.topology_uuid);
dPathLink->numLinkTopologies = sPathLink->numLinkTopologies;
for (gint j = 0; j < dPathLink->numLinkTopologies; j++) {
struct linkTopology_t* dLinkTop = &(dPathLink->linkTopologies[j]);
struct linkTopology_t* sLinkTop = &(sPathLink->linkTopologies[j]);
duplicate_string(dLinkTop->topologyId, sLinkTop->topologyId);
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate the route output instance
*
* @param dst_ro
* @param src_ro
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_compRouteOuput(struct compRouteOutput_t* dst_ro, struct compRouteOutput_t* src_ro) {
g_assert(dst_ro); g_assert(src_ro);
// Copy the serviceId
copy_service_id(&dst_ro->serviceId, &src_ro->serviceId);
dst_ro->num_service_endpoints_id = src_ro->num_service_endpoints_id;
for (gint j = 0; j < dst_ro->num_service_endpoints_id; j++) {
struct service_endpoints_id_t* iEp = &(src_ro->service_endpoints_id[j]);
struct service_endpoints_id_t* oEp = &(dst_ro->service_endpoints_id[j]);
copy_service_endpoint_id(oEp, iEp);
}
// Copy paths
dst_ro->numPaths = src_ro->numPaths;
for (gint j = 0; j < dst_ro->numPaths; j++) {
struct path_t* dst_path = &(dst_ro->paths[j]);
struct path_t* src_path = &(src_ro->paths[j]);
copy_path(dst_path, src_path);
}
// copy no path issue value
dst_ro->noPathIssue = src_ro->noPathIssue;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate the computation route output list
*
* @param dst
* @param src
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_route_list(struct compRouteOutputList_t* dst, struct compRouteOutputList_t* src) {
g_assert(src); g_assert(dst);
dst->numCompRouteConnList = src->numCompRouteConnList;
dst->compRouteOK = src->compRouteOK;
memcpy(&dst->compRouteConnAvBandwidth, &src->compRouteConnAvBandwidth, sizeof(gdouble));
memcpy(&dst->compRouteConnAvPathLength, &src->compRouteConnAvPathLength, sizeof(gdouble));
for (gint i = 0; i < src->numCompRouteConnList; i++) {
struct compRouteOutput_t* src_ro = &(src->compRouteConnection[i]);
struct compRouteOutput_t* dst_ro = &(dst->compRouteConnection[i]);
duplicate_compRouteOuput(dst_ro, src_ro);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for path of struct compRouteOutputItem_t *
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputItem_t *create_path_item () {
struct compRouteOutputItem_t *p = g_malloc0 (sizeof (struct compRouteOutputItem_t));
if (p == NULL) {
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sort the set of paths the AvailBw, Cost and Delay
*
* @params setP
* @params args
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void sort_path_set(struct path_set_t* setP, guint args) {
g_assert(setP);
// Sort the paths contained in setP by:
// 1st Criteria: The path cost (maybe bound to link distance)
// 2nd Criteria: The consumed path power
// 3nd Criteria: The path latency
// 3rd Criteria: The available Bw
float epsilon = 0.1;
for (gint i = 0; i < setP->numPaths; i++) {
for (gint j = 0; j < (setP->numPaths - i - 1); j++) {
struct compRouteOutputItem_t* path1 = &setP->paths[j];
struct compRouteOutputItem_t* path2 = &setP->paths[j + 1];
struct compRouteOutputItem_t* pathTmp = create_path_item();
//////////////////////// Criterias ////////////////////////////////////////
// 1st Criteria (Cost)
if (path2->cost < path1->cost) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
if (path2->cost == path1->cost) {
// 2nd Criteria (Energy)
if (args & ENERGY_EFFICIENT_ARGUMENT) {
if (path2->power < path1->power) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else { // path1->power < path2->power
g_free(pathTmp);
continue;
}
}
else { // No enery efficient argument
// 3rd Criteria (latency)
if (path2->delay < path1->delay) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else if (path1->delay < path2->delay) {
g_free(pathTmp);
continue;
}
else { // path1->delay == path2->delay
// 4th Criteria (available bw)
if (path2->availCap > path1->availCap) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else {
g_free(pathTmp);
continue;
}
}
}
}
else { // path1->cost < path2->cost
g_free(pathTmp);
continue;
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove first element from the path sets
*
* @params setP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void pop_front_path_set (struct path_set_t *setP) {
for (gint j = 0; j < setP->numPaths - 1; j++) {
struct compRouteOutputItem_t *path1 = &setP->paths[j];
struct compRouteOutputItem_t *path2 = &setP->paths[j+1];
duplicate_path (path2, path1);
}
setP->numPaths--;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add routeElement to the back of the path
*
* @param rE
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void add_routeElement_path_back (struct routeElement_t *rE, struct compRouteOutputItem_t *p) {
//DEBUG_PC ("p->numRouteElements: %d", p->numRouteElements);
p->numRouteElements++;
gint index = p->numRouteElements - 1;
struct nodes_t *pn = &(p->routeElement[index].aNodeId);
struct nodes_t *rEn = &(rE->aNodeId);
// duplicate aNodeId
duplicate_node_id (rEn, pn);
pn = &(p->routeElement[index].zNodeId);
rEn = &(rE->zNodeId);
duplicate_node_id (rEn, pn);
duplicate_string(p->routeElement[index].aEndPointId, rE->aEndPointId);
duplicate_string(p->routeElement[index].zEndPointId, rE->zEndPointId);
duplicate_string(p->routeElement[index].linkId, rE->linkId);
duplicate_string(p->routeElement[index].aTopologyId, rE->aTopologyId);
duplicate_string(p->routeElement[index].zTopologyId, rE->zTopologyId);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief This function compares ap and rootPath. If all the links are equal between both ap and rootPath till the sN, then the link from sN to next node
* ap is returned
*
* @params ap
* @params p
* @params sN
* @params e
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gboolean matching_path_rootPath (struct compRouteOutputItem_t *ap, struct compRouteOutputItem_t *rootPath, struct nodes_t *sN, struct edges_t *e) {
gint j = 0;
gboolean ret = FALSE;
while ((j < ap->numRouteElements) && (j < rootPath->numRouteElements)) {
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) &&
//(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0) &&
(memcmp (sN->nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0)) {
duplicate_node_id (&ap->routeElement[j].aNodeId, &e->aNodeId);
duplicate_node_id (&ap->routeElement[j].zNodeId, &e->zNodeId);
duplicate_string(e->aEndPointId, ap->routeElement[j].aEndPointId);
duplicate_string(e->zEndPointId, ap->routeElement[j].zEndPointId);
duplicate_string(e->linkId, ap->routeElement[j].linkId);
return TRUE;
}
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) &&
(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) == 0)) {
j++;
continue;
}
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) != 0) ||
(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0)) {
//DEBUG_PC ("ap and rootPath not in the same path");
return ret;
}
}
return ret;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief This function is used to modify the graph to be used for running the subsequent SP computations acording to the YEN algorithm principles
*
* @params g
* @params A
* @params rootPath
* @params spurNode
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void modify_targeted_graph (struct graph_t *g, struct path_set_t *A, struct compRouteOutputItem_t * rootPath, struct nodes_t * spurNode) {
//DEBUG_PC ("Modify the Targeted graph according to the Yen algorithm principles");
for (gint j = 0; j < A->numPaths; j++) {
struct compRouteOutputItem_t *ap = &A->paths[j];
struct edges_t *e = create_edge();
gboolean ret = FALSE;
ret = matching_path_rootPath (ap, rootPath, spurNode, e);
if (ret == TRUE) {
DEBUG_PC ("Removal %s[%s] --> %s[%s] from the graph", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, e->aEndPointId);
remove_edge_from_graph (g, e);
//DEBUG_PC ("Print Resulting Graph");
print_graph (g);
g_free (e);
}
if (ret == FALSE) {
g_free (e);
continue;
}
}
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Supporting fucntion to Check if a nodeId is already in the items of a given GList
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint find_nodeId (gconstpointer data, gconstpointer userdata) {
/** check values */
g_assert(data != NULL);
g_assert(userdata != NULL);
struct nodeItem_t *SNodeId = (struct nodeItem_t *)data;
guchar * nodeId = (guchar *)userdata;
//DEBUG_PC ("SNodeId (%s) nodeId (%s)", SNodeId->node.nodeId, nodeId);
if (!memcmp(SNodeId->node.nodeId, nodeId, strlen (SNodeId->node.nodeId))) {
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
return (0);
}
return -1;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Explores the link between u and v
*
* @param u
* @param v
* @param g
* @param s
* @param S
* @param Q
* @param mapNodes
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint check_link (struct nodeItem_t *u, gint indexGraphU, gint indexGraphV, struct graph_t *g,
struct service_t *s, GList **S, GList **Q, struct map_nodes_t *mapNodes,
guint arg) {
g_assert(g); g_assert(s); g_assert(mapNodes);
struct targetNodes_t *v = &(g->vertices[indexGraphU].targetedVertices[indexGraphV]);
DEBUG_PC("=======================CHECK Edge %s => %s =================================", u->node.nodeId, v->tVertice.nodeId);
//DEBUG_PC("\t %s => %s", u->node.nodeId, v->tVertice.nodeId);
// v already explored in S? then, discard it
GList *found = g_list_find_custom (*S, v->tVertice.nodeId, find_nodeId);
if (found != NULL) {
DEBUG_PC ("%s in S, DISCARD", v->tVertice.nodeId);
return 0;
}
// Get the set of constraints imposed by the service
struct path_constraints_t* path_constraints = get_path_constraints(s);
gdouble distance_through_u = INFINITY_COST ,latency_through_u = INFINITY_COST, power_through_u = INFINITY_COST;
gint i = 0, foundAvailBw = 0;
// BANDWIDTH requirement to be fulfilled on EDGE u->v
gdouble edgeAvailBw = 0.0, edgeTotalBw = 0.0;
for (i = 0; i < v->numEdges; i++) {
struct edges_t *e = &(v->edges[i]);
memcpy (&edgeAvailBw, &(e->availCap), sizeof (gdouble));
memcpy(&edgeTotalBw, &(e->totalCap), sizeof(gdouble));
DEBUG_PC("EDGE %s[%s] => %s[%s]", u->node.nodeId, e->aEndPointId, v->tVertice.nodeId, e->zEndPointId);
//DEBUG_PC ("\t %s[%s] =>", u->node.nodeId, e->aEndPointId);
//DEBUG_PC("\t => %s[%s]", v->tVertice.nodeId, e->zEndPointId);
DEBUG_PC("\t Edge Att: AvailBw: %f, TotalBw: %f", edgeAvailBw, edgeTotalBw);
if ((path_constraints->bw == TRUE) && (edgeAvailBw < path_constraints->bwConstraint)) {
else {
foundAvailBw = 1;
break;
}
}
// BW constraint NOT MET, then DISCARD edge
if ((path_constraints->bw == TRUE) && (foundAvailBw == 0)) {
DEBUG_PC ("Edge AvailBw: %f < path_constraint: %f -- DISCARD Edge", edgeAvailBw, path_constraints->bwConstraint);
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
g_free(path_constraints);
return 0;
}
gint indexEdge = i; // get the index for the explored edge
// Update distance, latency and availBw through u to reach v
gint map_uIndex = get_map_index_by_nodeId (u->node.nodeId, mapNodes);
struct map_t *u_map = &mapNodes->map[map_uIndex];
distance_through_u = u_map->distance + v->edges[indexEdge].cost;
latency_through_u = u_map->latency + v->edges[indexEdge].delay;
// Consumed power at v through u is the sum
// 1. Power from src to u
// 2. Power-idle at node u
// 3. power consumed over the edge between u and v, i.e. energy*usedBw
power_through_u = u_map->power + g->vertices[indexGraphU].power_idle + ((edgeTotalBw - edgeAvailBw + path_constraints->bwConstraint) * (v->edges[indexEdge].energy));
gdouble availBw_through_u = 0.0;
// ingress endpoint (u) is the src of the request
if (strcmp (u->node.nodeId, s->service_endpoints_id[0].device_uuid) == 0) {
//DEBUG_PC ("AvailBw %f on %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);
memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));
}
else {
// Get the minimum available bandwidth between the src-->u and the new added edge u-->v
//DEBUG_PC ("Current AvailBw: %f from src to %s", u_map->avaiBandwidth, u->node.nodeId);
//DEBUG_PC ("AvailBw: %f %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);
if (u_map->avaiBandwidth <= edgeAvailBw) {
memcpy (&availBw_through_u, &u_map->avaiBandwidth, sizeof (gdouble));
}
else {
memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));
}
}
// Relax the link according to the pathCost, latency, and energy
gint map_vIndex = get_map_index_by_nodeId (v->tVertice.nodeId, mapNodes);
struct map_t *v_map = &mapNodes->map[map_vIndex];
// If cost dist (u, v) > dist (src, v) relax the link
if (distance_through_u > v_map->distance) {
//DEBUG_PC ("dist(src, u) + dist(u, v): %f > dist (src, v): %f --> Discard Link", distance_through_u, v_map->distance);
return 0;
}
// If energy consumption optimization is requested
if (arg & ENERGY_EFFICIENT_ARGUMENT) {
if (distance_through_u == v_map->distance) {
if (power_through_u > v_map->power) {
DEBUG_PC("Energy (src -> u + u -> v: %f (Watts) > Energy (src, v): %f (Watts) --> DISCARD EDGE", power_through_u, v_map->power);
return 0;
}
// same energy consumption, consider latency
if ((power_through_u == v_map->power) && (latency_through_u > v_map->latency)) {
return 0;
}
// same energy, same latency, criteria: choose the one having the largest available bw
if ((power_through_u == v_map->power) && (latency_through_u == v_map->latency) && (availBw_through_u < v_map->avaiBandwidth)) {
return 0;
}
}
} // No optimization, rely on latency and available e2e bandwidth
else {
// If dist (src, u) + dist (u, v) = current dist(src, v), then use the latency as discarding criteria
if ((distance_through_u == v_map->distance) && (latency_through_u > v_map->latency)) {
//DEBUG_PC ("dist(src, u) + dist(u,v) = current dist(src, v), but latency (src,u) + latency (u, v) > current latency (src, v)");
return 0;
}
// If dist (src, u) + dist (u,v) == current dist(src, v) AND latency (src, u) + latency (u, v) == current latency (src, v), the available bandwidth is the criteria
if ((distance_through_u == v_map->distance) && (latency_through_u == v_map->latency) && (availBw_through_u < v_map->avaiBandwidth)) {
return 0;
}
}
DEBUG_PC ("Edge %s --> %s [RELAXED]", u->node.nodeId, v->tVertice.nodeId);
DEBUG_PC ("\t path till %s: AvailBw: %f Mb/s | Cost: %f | Latency: %f ms | Energy: %f Watts", v->tVertice.nodeId, availBw_through_u, distance_through_u,
latency_through_u, power_through_u);
// Update Q list --
struct nodeItem_t *nodeItem = g_malloc0 (sizeof (struct nodeItem_t));
if (nodeItem == NULL) {
DEBUG_PC ("memory allocation failed\n");
exit (-1);
}
nodeItem->distance = distance_through_u;
memcpy(&nodeItem->distance, &distance_through_u, sizeof(gdouble));
memcpy(&nodeItem->latency, &latency_through_u, sizeof(gdouble));
memcpy(&nodeItem->power, &power_through_u, sizeof(gdouble));
duplicate_node_id (&v->tVertice, &nodeItem->node);
// add node to the Q list
if (arg & ENERGY_EFFICIENT_ARGUMENT) {
*Q = g_list_insert_sorted(*Q, nodeItem, sort_by_energy);
}
*Q = g_list_insert_sorted (*Q, nodeItem, sort_by_distance);
// Update the mapNodes for the specific reached tv
v_map->distance = distance_through_u;
memcpy(&v_map->distance, &distance_through_u, sizeof(gdouble));
memcpy (&v_map->avaiBandwidth, &availBw_through_u, sizeof (gdouble));
memcpy (&v_map->latency, &latency_through_u, sizeof (gdouble));
memcpy(&v_map->power, &power_through_u, sizeof(gdouble));
// Duplicate the predecessor edge into the mapNodes
struct edges_t *e1 = &(v_map->predecessor);
struct edges_t *e2 = &(v->edges[indexEdge]);
duplicate_edge(e1, e2);
//DEBUG_PC ("u->v Edge: %s(%s) --> %s(%s)", e2->aNodeId.nodeId, e2->aEndPointId, e2->zNodeId.nodeId, e2->zEndPointId);
//DEBUG_PC("v-pred aTopology: %s", e2->aTopologyId);
//DEBUG_PC("v-pred zTopology: %s", e2->zTopologyId);
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
// Check whether v is dstPEId
//DEBUG_PC ("Targeted dstId: %s", s->service_endpoints_id[1].device_uuid);
//DEBUG_PC ("nodeId added to the map: %s", v_map->verticeId.nodeId);
//DEBUG_PC ("Q Length: %d", g_list_length(*Q));
g_free(path_constraints);
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check the feasability of a path wrt the constraints imposed by the request in terms of latency
*
* @param s
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gboolean check_computed_path_feasibility (struct service_t *s, struct compRouteOutputItem_t* p) {
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
float epsilon = 0.0000001;
struct path_constraints_t* pathCons = get_path_constraints(s);
gboolean ret = TRUE;
if (pathCons->latency == TRUE) {
if ((pathCons->latencyConstraint - p->delay > 0.0) || (fabs(pathCons->latencyConstraint - p->delay) < epsilon)) {
DEBUG_PC("Computed Path (latency: %f) is feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
}
else {
DEBUG_PC("Computed Path (latency: %f) is NOT feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
g_free(pathCons);
return FALSE;
}
}
// Other constraints...
g_free(pathCons);
return ret;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sorting the GList Q items by distance
*
* @param a
* @param b
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint sort_by_distance (gconstpointer a, gconstpointer b) {
//DEBUG_PC ("sort by distance a and b");
g_assert(a != NULL);
g_assert(b != NULL);
//DEBUG_PC ("sort by distance a and b");
struct nodeItem_t *node1 = (struct nodeItem_t *)a;
struct nodeItem_t *node2 = (struct nodeItem_t *)b;
g_assert (node1);
g_assert (node2);
//DEBUG_PC ("a->distance %u; b->distance %u", node1->distance, node2->distance);
//DEBUG_PC("a->latency: %f; b->latency: %f", node1->latency, node2->latency);
//1st criteria, sorting by lowest distance
if (node1->distance > node2->distance)
return 1;
else if (node1->distance < node2->distance)
return 0;
if (node1->distance == node2->distance) {
if (node1->latency > node2->latency)
return 1;
else if (node1->latency <= node2->latency)
return 0;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sorting the GList Q items by distance
*
* @param a
* @param b
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint sort_by_energy(gconstpointer a, gconstpointer b) {
g_assert(a != NULL);
g_assert(b != NULL);
//DEBUG_PC ("sort by distance a and b");
struct nodeItem_t* node1 = (struct nodeItem_t*)a;
struct nodeItem_t* node2 = (struct nodeItem_t*)b;
g_assert(node1);
g_assert(node2);
//1st criteria: sorting by lowest distance
if (node1->distance > node2->distance)
return 1;
if (node1->distance < node2->distance)
return 0;
// 2nd Criteria: sorting by the lowest energy
if (node1->power > node2->power)
return 1;
if (node1->power < node1->power)
return 0;
// 3rd Criteria: by the latency
if (node1->latency > node2->latency)
return 1;
if (node1->latency <= node2->latency)
return 0;
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for graph
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct graph_t * create_graph () {
struct graph_t * g = g_malloc0 (sizeof (struct graph_t));
if (g == NULL) {
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return g;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for mapNodes
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct map_nodes_t * create_map_node () {
struct map_nodes_t * mN = g_malloc0 (sizeof (struct map_nodes_t));
if (mN == NULL) {
DEBUG_PC ("Memory allocation failed");
exit (-1);
}
return mN;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look up for the service in the servieList bound to a serviceUUID
*
* @params serviceUUID
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct service_t* get_service_for_computed_path(gchar* serviceUUID) {
gint i = 0;
for(GList *listnode = g_list_first(serviceList);
listnode;
listnode = g_list_next(listnode), i++) {
struct service_t* s = (struct service_t*)(listnode->data);
if (strcmp(s->serviceId.service_uuid, serviceUUID) == 0)
return s;
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the service type
*
* @param type
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_service_type(guint type) {
switch (type) {
case SERVICE_TYPE_UNKNOWN:
DEBUG_PC("Service Type UNKNOWN");
break;
case SERVICE_TYPE_L3NM:
DEBUG_PC("Service Type L3NM");
break;
case SERVICE_TYPE_L2NM:
DEBUG_PC("Service Type L2NM");
break;
case SERVICE_TYPE_TAPI:
DEBUG_PC("Service Type L2NM");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the port direction
*
* @param direction
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_link_port_direction(guint direction) {
switch (direction) {
case LINK_PORT_DIRECTION_BIDIRECTIONAL:
//DEBUG_PC("Bidirectional Port Direction");
break;
case LINK_PORT_DIRECTION_INPUT:
//DEBUG_PC("Input Port Direction");
break;
case LINK_PORT_DIRECTION_OUTPUT:
//DEBUG_PC("Output Port Direction");
break;
case LINK_PORT_DIRECTION_UNKNOWN:
//DEBUG_PC("Unknown Port Direction");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the port termination direction
*
* @param direction
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_termination_direction(guint direction) {
switch (direction) {
case TERMINATION_DIRECTION_BIDIRECTIONAL:
//DEBUG_PC("Bidirectional Termination Direction");
break;
case TERMINATION_DIRECTION_SINK:
//DEBUG_PC("Input Termination Direction");
break;
case TERMINATION_DIRECTION_SOURCE:
//DEBUG_PC("Output Termination Direction");
break;
case TERMINATION_DIRECTION_UNKNOWN:
//DEBUG_PC("Unknown Termination Direction");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the termination state
*
* @param state
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_termination_state(guint state)
{
switch (state) {
case TERMINATION_STATE_CAN_NEVER_TERMINATE:
//DEBUG_PC("Can never Terminate");
break;
case TERMINATION_STATE_NOT_TERMINATED:
DEBUG_PC("Not terminated");
break;
case TERMINATION_STATE_TERMINATED_SERVER_TO_CLIENT_FLOW:
DEBUG_PC("Terminated server to client flow");
break;
case TERMINATION_STATE_TERMINATED_CLIENT_TO_SERVER_FLOW:
DEBUG_PC("Terminated client to server flow");
break;
case TERMINATION_STATE_TERMINATED_BIDIRECTIONAL:
//DEBUG_PC("Terminated bidirectional");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the capacity unit
*
* @param unit
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_capacity_unit(guint unit) {
switch (unit) {
case CAPACITY_UNIT_TB:
DEBUG_PC("Unit in TB");
break;
case CAPACITY_UNIT_TBPS:
DEBUG_PC("Unit in TB/s");
break;
case CAPACITY_UNIT_GB:
DEBUG_PC("Unit in GB");
break;
case CAPACITY_UNIT_GBPS:
DEBUG_PC("Unit in GB/s");
break;
case CAPACITY_UNIT_MB:
DEBUG_PC("Unit in MB");
break;
case CAPACITY_UNIT_MBPS:
//DEBUG_PC("Unit in MB/s");
break;
case CAPACITY_UNIT_KB:
DEBUG_PC("Unit in KB");
break;
case CAPACITY_UNIT_KBPS:
DEBUG_PC("Unit in KB/s");
break;
case CAPACITY_UNIT_GHZ:
DEBUG_PC("Unit in GHz");
break;
case CAPACITY_UNIT_MHZ:
DEBUG_PC("Unit in MHz");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the link forwarding direction
*
* @param linkFwDir
*