Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • tfs/controller
1 result
Show changes
Commits on Source (22)
Showing
with 2997 additions and 34 deletions
...@@ -13,4 +13,4 @@ set / network-instance default next-hop-groups group group1 nexthop 1 ip-address ...@@ -13,4 +13,4 @@ set / network-instance default next-hop-groups group group1 nexthop 1 ip-address
set / network-instance default static-routes route 172.16.2.0/24 next-hop-group group1 admin-state enable set / network-instance default static-routes route 172.16.2.0/24 next-hop-group group1 admin-state enable
set / system management openconfig admin-state enable set / system management openconfig admin-state enable
set / system gnmi-server network-instance mgmt yang-models openconfig set / system gnmi-server network-instance mgmt yang-models openconfig
\ No newline at end of file
...@@ -13,4 +13,4 @@ set / network-instance default next-hop-groups group group1 nexthop 1 ip-address ...@@ -13,4 +13,4 @@ set / network-instance default next-hop-groups group group1 nexthop 1 ip-address
set / network-instance default static-routes route 172.16.1.0/24 next-hop-group group1 admin-state enable set / network-instance default static-routes route 172.16.1.0/24 next-hop-group group1 admin-state enable
set / system management openconfig admin-state enable set / system management openconfig admin-state enable
set / system gnmi-server network-instance mgmt yang-models openconfig set / system gnmi-server network-instance mgmt yang-models openconfig
\ No newline at end of file
...@@ -20,7 +20,7 @@ from .Tools import add_value_from_tag ...@@ -20,7 +20,7 @@ from .Tools import add_value_from_tag
LOGGER = logging.getLogger(__name__) LOGGER = logging.getLogger(__name__)
XPATH_ACL_SET = "//ocacl:acl/ocacl:acl-sets/ocacl:acl-set" XPATH_ACL_SET = "//ocacl:acl/ocacl:acl-sets/ocacl:acl-set"
XPATH_A_ACL_ENTRY = ".//ocacl:acl-entries/ocacl:ecl-entry" XPATH_A_ACL_ENTRY = ".//ocacl:acl-entries/ocacl:acl-entry"
XPATH_A_IPv4 = ".//ocacl:ipv4/ocacl:config" XPATH_A_IPv4 = ".//ocacl:ipv4/ocacl:config"
XPATH_A_TRANSPORT = ".//ocacl:transport/ocacl:config" XPATH_A_TRANSPORT = ".//ocacl:transport/ocacl:config"
XPATH_A_ACTIONS = ".//ocacl:actions/ocacl:config" XPATH_A_ACTIONS = ".//ocacl:actions/ocacl:config"
...@@ -34,29 +34,31 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]: ...@@ -34,29 +34,31 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]:
response = [] response = []
acl = {} acl = {}
name = {}
for xml_acl in xml_data.xpath(XPATH_ACL_SET, namespaces=NAMESPACES): for xml_acl in xml_data.xpath(XPATH_ACL_SET, namespaces=NAMESPACES):
#LOGGER.info('xml_acl = {:s}'.format(str(ET.tostring(xml_acl)))) #LOGGER.info('xml_acl = {:s}'.format(str(ET.tostring(xml_acl))))
acl_name = xml_acl.find('ocacl:name', namespaces=NAMESPACES) acl_name = xml_acl.find('ocacl:name', namespaces=NAMESPACES)
if acl_name is None or acl_name.text is None: continue if acl_name is None or acl_name.text is None: continue
add_value_from_tag(acl, 'name', acl_name) add_value_from_tag(name, 'name', acl_name)
acl_type = xml_acl.find('ocacl:type', namespaces=NAMESPACES) acl_type = xml_acl.find('ocacl:type', namespaces=NAMESPACES)
add_value_from_tag(acl, 'type', acl_type) add_value_from_tag(acl, 'type', acl_type)
for xml_acl_entries in xml_acl.xpath(XPATH_A_ACL_ENTRY, namespaces=NAMESPACES): for xml_acl_entries in xml_acl.xpath(XPATH_A_ACL_ENTRY, namespaces=NAMESPACES):
acl_id = xml_acl_entries.find('ocacl:sequence_id', namespaces=NAMESPACES) acl_id = xml_acl_entries.find('ocacl:sequence-id', namespaces=NAMESPACES)
add_value_from_tag(acl, 'sequence_id', acl_id) add_value_from_tag(acl, 'sequence-id', acl_id)
LOGGER.info('xml_acl_id = {:s}'.format(str(ET.tostring(acl_id))))
for xml_ipv4 in xml_acl_entries.xpath(XPATH_A_IPv4, namespaces=NAMESPACES): for xml_ipv4 in xml_acl_entries.xpath(XPATH_A_IPv4, namespaces=NAMESPACES):
ipv4_source = xml_ipv4.find('ocacl:source_address', namespaces=NAMESPACES) ipv4_source = xml_ipv4.find('ocacl:source-address', namespaces=NAMESPACES)
add_value_from_tag(acl, 'source_address' , ipv4_source) add_value_from_tag(acl, 'source-address' , ipv4_source)
ipv4_destination = xml_ipv4.find('ocacl:destination_address', namespaces=NAMESPACES) ipv4_destination = xml_ipv4.find('ocacl:destination-address', namespaces=NAMESPACES)
add_value_from_tag(acl, 'destination_address' , ipv4_destination) add_value_from_tag(acl, 'destination-address' , ipv4_destination)
ipv4_protocol = xml_ipv4.find('ocacl:protocol', namespaces=NAMESPACES) ipv4_protocol = xml_ipv4.find('ocacl:protocol', namespaces=NAMESPACES)
add_value_from_tag(acl, 'protocol' , ipv4_protocol) add_value_from_tag(acl, 'protocol' , ipv4_protocol)
...@@ -64,30 +66,30 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]: ...@@ -64,30 +66,30 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]:
ipv4_dscp = xml_ipv4.find('ocacl:dscp', namespaces=NAMESPACES) ipv4_dscp = xml_ipv4.find('ocacl:dscp', namespaces=NAMESPACES)
add_value_from_tag(acl, 'dscp' , ipv4_dscp) add_value_from_tag(acl, 'dscp' , ipv4_dscp)
ipv4_hop_limit = xml_ipv4.find('ocacl:hop_limit', namespaces=NAMESPACES) ipv4_hop_limit = xml_ipv4.find('ocacl:hop-limit', namespaces=NAMESPACES)
add_value_from_tag(acl, 'hop_limit' , ipv4_hop_limit) add_value_from_tag(acl, 'hop-limit' , ipv4_hop_limit)
for xml_transport in xml_acl_entries.xpath(XPATH_A_TRANSPORT, namespaces=NAMESPACES): for xml_transport in xml_acl_entries.xpath(XPATH_A_TRANSPORT, namespaces=NAMESPACES):
transport_source = xml_transport.find('ocacl:source_port', namespaces=NAMESPACES) transport_source = xml_transport.find('ocacl:source-port', namespaces=NAMESPACES)
add_value_from_tag(acl, 'source_port' ,transport_source) add_value_from_tag(acl, 'source-port' ,transport_source)
transport_destination = xml_transport.find('ocacl:destination_port', namespaces=NAMESPACES) transport_destination = xml_transport.find('ocacl:destination-port', namespaces=NAMESPACES)
add_value_from_tag(acl, 'destination_port' ,transport_destination) add_value_from_tag(acl, 'destination-port' ,transport_destination)
transport_tcp_flags = xml_transport.find('ocacl:tcp_flags', namespaces=NAMESPACES) transport_tcp_flags = xml_transport.find('ocacl:tcp-flags', namespaces=NAMESPACES)
add_value_from_tag(acl, 'tcp_flags' ,transport_tcp_flags) add_value_from_tag(acl, 'tcp-flags' ,transport_tcp_flags)
for xml_action in xml_acl_entries.xpath(XPATH_A_ACTIONS, namespaces=NAMESPACES): for xml_action in xml_acl_entries.xpath(XPATH_A_ACTIONS, namespaces=NAMESPACES):
action = xml_action.find('ocacl:forwarding_action', namespaces=NAMESPACES) action = xml_action.find('ocacl:forwarding-action', namespaces=NAMESPACES)
add_value_from_tag(acl, 'forwarding_action' ,action) add_value_from_tag(acl, 'forwarding-action' ,action)
log_action = xml_action.find('ocacl:log_action', namespaces=NAMESPACES) log_action = xml_action.find('ocacl:log-action', namespaces=NAMESPACES)
add_value_from_tag(acl, 'log_action' ,log_action) add_value_from_tag(acl, 'log-action' ,log_action)
resource_key = '/acl/acl-set[{:s}][{:s}]/acl-entry[{:s}]'.format( resource_key = '/acl/acl-set[{:s}][{:s}]/acl-entry[{:s}]'.format(
acl['name'], acl['type'], acl['sequence-id']) name['name'], acl['type'], acl['sequence-id'])
response.append((resource_key,acl)) response.append((resource_key,acl))
for xml_interface in xml_data.xpath(XPATH_INTERFACE, namespaces=NAMESPACES): for xml_interface in xml_data.xpath(XPATH_INTERFACE, namespaces=NAMESPACES):
...@@ -99,25 +101,25 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]: ...@@ -99,25 +101,25 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]:
for xml_ingress in xml_interface.xpath(XPATH_I_INGRESS, namespaces=NAMESPACES): for xml_ingress in xml_interface.xpath(XPATH_I_INGRESS, namespaces=NAMESPACES):
i_name = xml_ingress.find('ocacl:set_name_ingress', namespaces=NAMESPACES) i_name = xml_ingress.find('ocacl:set-name-ingress', namespaces=NAMESPACES)
add_value_from_tag(interface, 'ingress_set_name' , i_name) add_value_from_tag(interface, 'ingress-set-name' , i_name)
i_type = xml_ingress.find('ocacl:type_ingress', namespaces=NAMESPACES) i_type = xml_ingress.find('ocacl:type-ingress', namespaces=NAMESPACES)
add_value_from_tag(interface, 'ingress_type' , i_type) add_value_from_tag(interface, 'ingress-type' , i_type)
resource_key = '/acl/interfaces/ingress[{:s}][{:s}]'.format( resource_key = '/acl/interfaces/ingress[{:s}][{:s}]'.format(
acl['name'], acl['type']) name['name'], acl['type'])
response.append((resource_key,interface)) response.append((resource_key,interface))
for xml_egress in xml_interface.xpath(XPATH_I_EGRESS, namespaces=NAMESPACES): for xml_egress in xml_interface.xpath(XPATH_I_EGRESS, namespaces=NAMESPACES):
e_name = xml_egress.find('ocacl:set_name_egress', namespaces=NAMESPACES) e_name = xml_egress.find('ocacl:set-name-egress', namespaces=NAMESPACES)
add_value_from_tag(interface, 'egress_set_name' , e_name) add_value_from_tag(interface, 'egress-set-name' , e_name)
e_type = xml_egress.find('ocacl:type_egress', namespaces=NAMESPACES) e_type = xml_egress.find('ocacl:type-egress', namespaces=NAMESPACES)
add_value_from_tag(interface, 'egress_type' , e_type) add_value_from_tag(interface, 'egress-type' , e_type)
resource_key = '/acl/interfaces/egress[{:s}][{:s}]'.format( resource_key = '/acl/interfaces/egress[{:s}][{:s}]'.format(
acl['name'], acl['type']) name['name'], acl['type'])
response.append((resource_key,interface)) response.append((resource_key,interface))
return response return response
...@@ -75,6 +75,10 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]: ...@@ -75,6 +75,10 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]:
component_location = xml_component.find('ocp:state/ocp:location', namespaces=NAMESPACES) component_location = xml_component.find('ocp:state/ocp:location', namespaces=NAMESPACES)
if not component_location is None: if not component_location is None:
add_value_from_tag(inventory['attributes'], 'location', component_location) add_value_from_tag(inventory['attributes'], 'location', component_location)
component_id = xml_component.find('ocp:state/ocp:id', namespaces=NAMESPACES)
if not component_id is None:
add_value_from_tag(inventory['attributes'], 'id', component_id)
component_type = xml_component.find('ocp:state/ocp:type', namespaces=NAMESPACES) component_type = xml_component.find('ocp:state/ocp:type', namespaces=NAMESPACES)
if component_type is not None: if component_type is not None:
...@@ -109,7 +113,7 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]: ...@@ -109,7 +113,7 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]:
component_mfg_name = xml_component.find('ocp:state/ocp:mfg-name', namespaces=NAMESPACES) component_mfg_name = xml_component.find('ocp:state/ocp:mfg-name', namespaces=NAMESPACES)
if not component_mfg_name is None: if not component_mfg_name is None:
add_value_from_tag(inventory['attributes'], 'manufacturer-name', component_mfg_name) add_value_from_tag(inventory['attributes'], 'mfg-name', component_mfg_name)
component_removable = xml_component.find('ocp:state/ocp:removable', namespaces=NAMESPACES) component_removable = xml_component.find('ocp:state/ocp:removable', namespaces=NAMESPACES)
if not component_removable is None: if not component_removable is None:
......
...@@ -23,6 +23,8 @@ XPATH_NETWORK_INSTANCES = "//ocni:network-instances/ocni:network-instance" ...@@ -23,6 +23,8 @@ XPATH_NETWORK_INSTANCES = "//ocni:network-instances/ocni:network-instance"
XPATH_NI_PROTOCOLS = ".//ocni:protocols/ocni:protocol" XPATH_NI_PROTOCOLS = ".//ocni:protocols/ocni:protocol"
XPATH_NI_TABLE_CONNECTS = ".//ocni:table-connections/ocni:table-connection" XPATH_NI_TABLE_CONNECTS = ".//ocni:table-connections/ocni:table-connection"
XPATH_NI_INTERFACE = ".//ocni:interfaces/ocni:interface"
XPATH_NI_IIP_AP = ".//ocni:inter-instance-policies/ocni:apply-policy" XPATH_NI_IIP_AP = ".//ocni:inter-instance-policies/ocni:apply-policy"
XPATH_NI_IIP_AP_IMPORT = ".//ocni:config/ocni:import-policy" XPATH_NI_IIP_AP_IMPORT = ".//ocni:config/ocni:import-policy"
XPATH_NI_IIP_AP_EXPORT = ".//ocni:config/ocni:export-policy" XPATH_NI_IIP_AP_EXPORT = ".//ocni:config/ocni:export-policy"
...@@ -136,6 +138,21 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]: ...@@ -136,6 +138,21 @@ def parse(xml_data : ET.Element) -> List[Tuple[str, Dict[str, Any]]]:
table_connection['address_family']) table_connection['address_family'])
response.append((resource_key, table_connection)) response.append((resource_key, table_connection))
for xml_interface in xml_network_instance.xpath(XPATH_NI_INTERFACE, namespaces=NAMESPACES):
LOGGER.info('xml_interfaces = {:s}'.format(str(ET.tostring(xml_interface))))
interface = {}
name_iface = xml_interface.find('ocni:config/ocni:interface', namespaces=NAMESPACES)
if name_iface is None or name_iface.text is None: continue
add_value_from_tag(interface, 'name_iface', name_iface)
name_subiface = xml_interface.find('ocni:config/ocni:subinterface', namespaces=NAMESPACES)
add_value_from_tag(interface, 'name_subiface', name_subiface)
resource_key = '/network_instance[{:s}]/interface[{:s}]'.format(
network_instance['name'], interface['name_iface'])
response.append((resource_key, interface))
for xml_iip_ap in xml_network_instance.xpath(XPATH_NI_IIP_AP, namespaces=NAMESPACES): for xml_iip_ap in xml_network_instance.xpath(XPATH_NI_IIP_AP, namespaces=NAMESPACES):
#LOGGER.info('xml_iip_ap = {:s}'.format(str(ET.tostring(xml_iip_ap)))) #LOGGER.info('xml_iip_ap = {:s}'.format(str(ET.tostring(xml_iip_ap))))
......
...@@ -18,9 +18,11 @@ from common.Constants import ServiceNameEnum ...@@ -18,9 +18,11 @@ from common.Constants import ServiceNameEnum
from common.Settings import ( from common.Settings import (
ENVVAR_SUFIX_SERVICE_HOST, ENVVAR_SUFIX_SERVICE_PORT_GRPC, get_env_var_name, get_log_level, get_metrics_port, ENVVAR_SUFIX_SERVICE_HOST, ENVVAR_SUFIX_SERVICE_PORT_GRPC, get_env_var_name, get_log_level, get_metrics_port,
wait_for_environment_variables) wait_for_environment_variables)
from .NbiService import NbiService from .NbiService import NbiService
from .rest_server.RestServer import RestServer from .rest_server.RestServer import RestServer
from .rest_server.nbi_plugins.etsi_bwm import register_etsi_bwm_api from .rest_server.nbi_plugins.etsi_bwm import register_etsi_bwm_api
from .rest_server.nbi_plugins.ietf_hardware import register_ietf_hardware
from .rest_server.nbi_plugins.ietf_l2vpn import register_ietf_l2vpn from .rest_server.nbi_plugins.ietf_l2vpn import register_ietf_l2vpn
from .rest_server.nbi_plugins.ietf_l3vpn import register_ietf_l3vpn from .rest_server.nbi_plugins.ietf_l3vpn import register_ietf_l3vpn
from .rest_server.nbi_plugins.ietf_network import register_ietf_network from .rest_server.nbi_plugins.ietf_network import register_ietf_network
...@@ -63,6 +65,7 @@ def main(): ...@@ -63,6 +65,7 @@ def main():
rest_server = RestServer() rest_server = RestServer()
register_etsi_bwm_api(rest_server) register_etsi_bwm_api(rest_server)
register_ietf_hardware(rest_server)
register_ietf_l2vpn(rest_server) # Registering L2VPN entrypoint register_ietf_l2vpn(rest_server) # Registering L2VPN entrypoint
register_ietf_l3vpn(rest_server) # Registering L3VPN entrypoint register_ietf_l3vpn(rest_server) # Registering L3VPN entrypoint
register_ietf_network(rest_server) register_ietf_network(rest_server)
......
# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from flask import request
from flask.json import jsonify
from flask_restful import Resource
from common.tools.context_queries.Device import get_device
from context.client.ContextClient import ContextClient
from ..tools.Authentication import HTTP_AUTH
from ..tools.HttpStatusCodes import HTTP_OK, HTTP_SERVERERROR
from .YangHandler import YangHandler
LOGGER = logging.getLogger(__name__)
class Hardware(Resource):
@HTTP_AUTH.login_required
def get(self, device_uuid : str):
LOGGER.debug('Device UUID: {:s}'.format(str(device_uuid)))
LOGGER.debug('Request: {:s}'.format(str(request)))
try:
context_client = ContextClient()
device = get_device(
context_client, device_uuid, rw_copy=False,
include_endpoints=False, include_config_rules=False, include_components=True
)
if device is None:
raise Exception('Device({:s}) not found in database'.format(str(device_uuid)))
yang_handler = YangHandler()
hardware_reply = yang_handler.compose(device)
yang_handler.destroy()
response = jsonify(hardware_reply)
response.status_code = HTTP_OK
except Exception as e: # pylint: disable=broad-except
MSG = 'Something went wrong Retrieving Hardware of Device({:s})'
LOGGER.exception(MSG.format(str(device_uuid)))
response = jsonify({'error': str(e)})
response.status_code = HTTP_SERVERERROR
return response
\ No newline at end of file
# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import libyang, os
from common.proto.context_pb2 import Device
from typing import Dict, Optional
import json
import logging
import re
import datetime
LOGGER = logging.getLogger(__name__)
YANG_DIR = os.path.join(os.path.dirname(__file__), 'yang')
YANG_MODULES = [
'iana-hardware',
'ietf-hardware'
]
class YangHandler:
def __init__(self) -> None:
self._yang_context = libyang.Context(YANG_DIR)
for yang_module_name in YANG_MODULES:
LOGGER.info('Loading module: {:s}'.format(str(yang_module_name)))
self._yang_context.load_module(yang_module_name).feature_enable_all()
def parse_to_dict(self, message : Dict) -> Dict:
yang_module = self._yang_context.get_module('ietf-hardware')
dnode : Optional[libyang.DNode] = yang_module.parse_data_dict(
message, validate_present=True, validate=True, strict=True
)
if dnode is None: raise Exception('Unable to parse Message({:s})'.format(str(message)))
message = dnode.print_dict()
dnode.free()
return message
@staticmethod
def convert_to_iso_date(date_str: str) -> Optional[str]:
date_str = date_str.strip('"')
# Define the regex pattern for ISO 8601 date format
pattern = r"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?(Z|[\+\-]\d{2}:\d{2})"
# Check if the input date string matches the pattern
if re.match(pattern, date_str):
return date_str # Already in ISO format
else:
try:
# Parse the input date string as a datetime object
datetime_obj = datetime.datetime.strptime(date_str, "%Y-%m-%d")
# Convert to ISO format
iso_date = datetime_obj.isoformat() + "Z"
return iso_date
except ValueError:
return None # Invalid date format
def compose(self, device : Device) -> Dict:
# compose device iterating through the components
hardware = self._yang_context.create_data_path('/ietf-hardware:hardware')
physical_index = 1
for component in device.components:
attributes = component.attributes
component_new = hardware.create_path('component[name="{:s}"]'.format(component.name))
component_new.create_path('name', component.name)
#Cambiar las clases especiales, su formato y añadir isfru
component_type = component.type
if component_type == "TRANSCEIVER" :
component_type = "module"
if component_type == "FRU" :
component_type = "slack"
component_new.create_path('is-fru', True)
else :
component_new.create_path('is-fru', False)
component_type = component_type.replace("_", "-").lower()
component_type = 'iana-hardware:' + component_type
component_new.create_path('class', component_type)
#Añadir resto de atributos en IETF
physical_index += 1
component_new.create_path('physical-index', physical_index)
component_new.create_path('description', attributes["description"])
component_new.create_path('parent', component.parent)
if attributes["mfg-date"] != "":
mfg_date = self.convert_to_iso_date(attributes["mfg-date"])
LOGGER.info('component[name="{:s}"]'.format(attributes["mfg-date"]))
component_new.create_path('mfg-date', mfg_date)
component_new.create_path('hardware-rev', attributes["hardware-rev"])
component_new.create_path('software-rev', attributes["software-rev"])
component_new.create_path('firmware-rev', attributes["firmware-version"])
component_new.create_path('serial-num', attributes["serial-num"])
component_new.create_path('mfg-name', attributes["mfg-name"])
if attributes["id"]:
component_new.create_path('parent-rel-pos', attributes["id"])
component_new.create_path('uri', component.name)
component_new.create_path('uuid', component.component_uuid.uuid)
contains_child = []
for component2 in device.components:
if component.name == component2.parent :
contains_child.append(component2.name)
component_new.create_path('contains-child', contains_child)
return json.loads(hardware.print_mem('json'))
def destroy(self) -> None:
self._yang_context.destroy()
\ No newline at end of file
# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from nbi.service.rest_server.nbi_plugins.ietf_hardware.Hardware import Hardware
from nbi.service.rest_server.RestServer import RestServer
URL_PREFIX = "/restconf/data/device=<path:device_uuid>/ietf-hardware:hardware"
def register_ietf_hardware(rest_server: RestServer):
rest_server.add_resource(Hardware, URL_PREFIX)
\ No newline at end of file
module iana-hardware {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:iana-hardware";
prefix ianahw;
organization "IANA";
contact
" Internet Assigned Numbers Authority
Postal: ICANN
12025 Waterfront Drive, Suite 300
Los Angeles, CA 90094-2536
United States of America
Tel: +1 310 301 5800
E-Mail: iana@iana.org>";
description
"IANA-defined identities for hardware class.
The latest revision of this YANG module can be obtained from
the IANA website.
Requests for new values should be made to IANA via
email (iana@iana.org).
Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
The initial version of this YANG module is part of RFC 8348;
see the RFC itself for full legal notices.";
reference
"https://www.iana.org/assignments/yang-parameters";
revision 2018-03-13 {
description
"Initial revision.";
reference
"RFC 8348: A YANG Data Model for Hardware Management";
}
/*
* Identities
*/
identity hardware-class {
description
"This identity is the base for all hardware class
identifiers.";
}
identity unknown {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is unknown
to the server.";
}
identity chassis {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is an
overall container for networking equipment. Any class of
physical component, except a stack, may be contained within a
chassis; a chassis may only be contained within a stack.";
}
identity backplane {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is some sort
of device for aggregating and forwarding networking traffic,
such as a shared backplane in a modular ethernet switch. Note
that an implementation may model a backplane as a single
physical component, which is actually implemented as multiple
discrete physical components (within a chassis or stack).";
}
identity container {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is capable
of containing one or more removable physical entities,
possibly of different types. For example, each (empty or
full) slot in a chassis will be modeled as a container. Note
that all removable physical components should be modeled
within a container component, such as field-replaceable
modules, fans, or power supplies. Note that all known
containers should be modeled by the agent, including empty
containers.";
}
identity power-supply {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is a
power-supplying component.";
}
identity fan {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is a fan or
other heat-reduction component.";
}
identity sensor {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is some sort
of sensor, such as a temperature sensor within a router
chassis.";
}
identity module {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is some sort
of self-contained sub-system. If a module component is
removable, then it should be modeled within a container
component; otherwise, it should be modeled directly within
another physical component (e.g., a chassis or another
module).";
}
identity port {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is some sort
of networking port capable of receiving and/or transmitting
networking traffic.";
}
identity stack {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is some sort
of super-container (possibly virtual) intended to group
together multiple chassis entities. A stack may be realized
by a virtual cable, a real interconnect cable attached to
multiple chassis, or multiple interconnect cables. A stack
should not be modeled within any other physical components,
but a stack may be contained within another stack. Only
chassis components should be contained within a stack.";
}
identity cpu {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is some sort
of central processing unit.";
}
identity energy-object {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is some sort
of energy object, i.e., it is a piece of equipment that is
part of or attached to a communications network that is
monitored, it is controlled, or it aids in the management of
another device for Energy Management.";
}
identity battery {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is some sort
of battery.";
}
identity storage-drive {
base ianahw:hardware-class;
description
"This identity is applicable if the hardware class is some sort
of component with data storage capability as its main
functionality, e.g., hard disk drive (HDD), solid-state device
(SSD), solid-state hybrid drive (SSHD), object storage device
(OSD), or other.";
}
}
module ietf-inet-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
prefix "inet";
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: David Kessens
<mailto:david.kessens@nsn.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>";
description
"This module contains a collection of generally useful derived
YANG data types for Internet addresses and related things.
Copyright (c) 2013 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 6991; see
the RFC itself for full legal notices.";
revision 2013-07-15 {
description
"This revision adds the following new data types:
- ip-address-no-zone
- ipv4-address-no-zone
- ipv6-address-no-zone";
reference
"RFC 6991: Common YANG Data Types";
}
revision 2010-09-24 {
description
"Initial revision.";
reference
"RFC 6021: Common YANG Data Types";
}
/*** collection of types related to protocol fields ***/
typedef ip-version {
type enumeration {
enum unknown {
value "0";
description
"An unknown or unspecified version of the Internet
protocol.";
}
enum ipv4 {
value "1";
description
"The IPv4 protocol as defined in RFC 791.";
}
enum ipv6 {
value "2";
description
"The IPv6 protocol as defined in RFC 2460.";
}
}
description
"This value represents the version of the IP protocol.
In the value set and its semantics, this type is equivalent
to the InetVersion textual convention of the SMIv2.";
reference
"RFC 791: Internet Protocol
RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
RFC 4001: Textual Conventions for Internet Network Addresses";
}
typedef dscp {
type uint8 {
range "0..63";
}
description
"The dscp type represents a Differentiated Services Code Point
that may be used for marking packets in a traffic stream.
In the value set and its semantics, this type is equivalent
to the Dscp textual convention of the SMIv2.";
reference
"RFC 3289: Management Information Base for the Differentiated
Services Architecture
RFC 2474: Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers
RFC 2780: IANA Allocation Guidelines For Values In
the Internet Protocol and Related Headers";
}
typedef ipv6-flow-label {
type uint32 {
range "0..1048575";
}
description
"The ipv6-flow-label type represents the flow identifier or Flow
Label in an IPv6 packet header that may be used to
discriminate traffic flows.
In the value set and its semantics, this type is equivalent
to the IPv6FlowLabel textual convention of the SMIv2.";
reference
"RFC 3595: Textual Conventions for IPv6 Flow Label
RFC 2460: Internet Protocol, Version 6 (IPv6) Specification";
}
typedef port-number {
type uint16 {
range "0..65535";
}
description
"The port-number type represents a 16-bit port number of an
Internet transport-layer protocol such as UDP, TCP, DCCP, or
SCTP. Port numbers are assigned by IANA. A current list of
all assignments is available from <http://www.iana.org/>.
Note that the port number value zero is reserved by IANA. In
situations where the value zero does not make sense, it can
be excluded by subtyping the port-number type.
In the value set and its semantics, this type is equivalent
to the InetPortNumber textual convention of the SMIv2.";
reference
"RFC 768: User Datagram Protocol
RFC 793: Transmission Control Protocol
RFC 4960: Stream Control Transmission Protocol
RFC 4340: Datagram Congestion Control Protocol (DCCP)
RFC 4001: Textual Conventions for Internet Network Addresses";
}
/*** collection of types related to autonomous systems ***/
typedef as-number {
type uint32;
description
"The as-number type represents autonomous system numbers
which identify an Autonomous System (AS). An AS is a set
of routers under a single technical administration, using
an interior gateway protocol and common metrics to route
packets within the AS, and using an exterior gateway
protocol to route packets to other ASes. IANA maintains
the AS number space and has delegated large parts to the
regional registries.
Autonomous system numbers were originally limited to 16
bits. BGP extensions have enlarged the autonomous system
number space to 32 bits. This type therefore uses an uint32
base type without a range restriction in order to support
a larger autonomous system number space.
In the value set and its semantics, this type is equivalent
to the InetAutonomousSystemNumber textual convention of
the SMIv2.";
reference
"RFC 1930: Guidelines for creation, selection, and registration
of an Autonomous System (AS)
RFC 4271: A Border Gateway Protocol 4 (BGP-4)
RFC 4001: Textual Conventions for Internet Network Addresses
RFC 6793: BGP Support for Four-Octet Autonomous System (AS)
Number Space";
}
/*** collection of types related to IP addresses and hostnames ***/
typedef ip-address {
type union {
type inet:ipv4-address;
type inet:ipv6-address;
}
description
"The ip-address type represents an IP address and is IP
version neutral. The format of the textual representation
implies the IP version. This type supports scoped addresses
by allowing zone identifiers in the address format.";
reference
"RFC 4007: IPv6 Scoped Address Architecture";
}
typedef ipv4-address {
type string {
pattern
'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+ '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+ '(%[\p{N}\p{L}]+)?';
}
description
"The ipv4-address type represents an IPv4 address in
dotted-quad notation. The IPv4 address may include a zone
index, separated by a % sign.
The zone index is used to disambiguate identical address
values. For link-local addresses, the zone index will
typically be the interface index number or the name of an
interface. If the zone index is not present, the default
zone of the device will be used.
The canonical format for the zone index is the numerical
format";
}
typedef ipv6-address {
type string {
pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+ '(%[\p{N}\p{L}]+)?';
pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+ '(%.+)?';
}
description
"The ipv6-address type represents an IPv6 address in full,
mixed, shortened, and shortened-mixed notation. The IPv6
address may include a zone index, separated by a % sign.
The zone index is used to disambiguate identical address
values. For link-local addresses, the zone index will
typically be the interface index number or the name of an
interface. If the zone index is not present, the default
zone of the device will be used.
The canonical format of IPv6 addresses uses the textual
representation defined in Section 4 of RFC 5952. The
canonical format for the zone index is the numerical
format as described in Section 11.2 of RFC 4007.";
reference
"RFC 4291: IP Version 6 Addressing Architecture
RFC 4007: IPv6 Scoped Address Architecture
RFC 5952: A Recommendation for IPv6 Address Text
Representation";
}
typedef ip-address-no-zone {
type union {
type inet:ipv4-address-no-zone;
type inet:ipv6-address-no-zone;
}
description
"The ip-address-no-zone type represents an IP address and is
IP version neutral. The format of the textual representation
implies the IP version. This type does not support scoped
addresses since it does not allow zone identifiers in the
address format.";
reference
"RFC 4007: IPv6 Scoped Address Architecture";
}
typedef ipv4-address-no-zone {
type inet:ipv4-address {
pattern '[0-9\.]*';
}
description
"An IPv4 address without a zone index. This type, derived from
ipv4-address, may be used in situations where the zone is
known from the context and hence no zone index is needed.";
}
typedef ipv6-address-no-zone {
type inet:ipv6-address {
pattern '[0-9a-fA-F:\.]*';
}
description
"An IPv6 address without a zone index. This type, derived from
ipv6-address, may be used in situations where the zone is
known from the context and hence no zone index is needed.";
reference
"RFC 4291: IP Version 6 Addressing Architecture
RFC 4007: IPv6 Scoped Address Architecture
RFC 5952: A Recommendation for IPv6 Address Text
Representation";
}
typedef ip-prefix {
type union {
type inet:ipv4-prefix;
type inet:ipv6-prefix;
}
description
"The ip-prefix type represents an IP prefix and is IP
version neutral. The format of the textual representations
implies the IP version.";
}
typedef ipv4-prefix {
type string {
pattern
'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+ '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+ '/(([0-9])|([1-2][0-9])|(3[0-2]))';
}
description
"The ipv4-prefix type represents an IPv4 address prefix.
The prefix length is given by the number following the
slash character and must be less than or equal to 32.
A prefix length value of n corresponds to an IP address
mask that has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to 0.
The canonical format of an IPv4 prefix has all bits of
the IPv4 address set to zero that are not part of the
IPv4 prefix.";
}
typedef ipv6-prefix {
type string {
pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+ '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+ '(/.+)';
}
description
"The ipv6-prefix type represents an IPv6 address prefix.
The prefix length is given by the number following the
slash character and must be less than or equal to 128.
A prefix length value of n corresponds to an IP address
mask that has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to 0.
The IPv6 address should have all bits that do not belong
to the prefix set to zero.
The canonical format of an IPv6 prefix has all bits of
the IPv6 address set to zero that are not part of the
IPv6 prefix. Furthermore, the IPv6 address is represented
as defined in Section 4 of RFC 5952.";
reference
"RFC 5952: A Recommendation for IPv6 Address Text
Representation";
}
/*** collection of domain name and URI types ***/
typedef domain-name {
type string {
pattern
'((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
+ '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
+ '|\.';
length "1..253";
}
description
"The domain-name type represents a DNS domain name. The
name SHOULD be fully qualified whenever possible.
Internet domain names are only loosely specified. Section
3.5 of RFC 1034 recommends a syntax (modified in Section
2.1 of RFC 1123). The pattern above is intended to allow
for current practice in domain name use, and some possible
future expansion. It is designed to hold various types of
domain names, including names used for A or AAAA records
(host names) and other records, such as SRV records. Note
that Internet host names have a stricter syntax (described
in RFC 952) than the DNS recommendations in RFCs 1034 and
1123, and that systems that want to store host names in
schema nodes using the domain-name type are recommended to
adhere to this stricter standard to ensure interoperability.
The encoding of DNS names in the DNS protocol is limited
to 255 characters. Since the encoding consists of labels
prefixed by a length bytes and there is a trailing NULL
byte, only 253 characters can appear in the textual dotted
notation.
The description clause of schema nodes using the domain-name
type MUST describe when and how these names are resolved to
IP addresses. Note that the resolution of a domain-name value
may require to query multiple DNS records (e.g., A for IPv4
and AAAA for IPv6). The order of the resolution process and
which DNS record takes precedence can either be defined
explicitly or may depend on the configuration of the
resolver.
Domain-name values use the US-ASCII encoding. Their canonical
format uses lowercase US-ASCII characters. Internationalized
domain names MUST be A-labels as per RFC 5890.";
reference
"RFC 952: DoD Internet Host Table Specification
RFC 1034: Domain Names - Concepts and Facilities
RFC 1123: Requirements for Internet Hosts -- Application
and Support
RFC 2782: A DNS RR for specifying the location of services
(DNS SRV)
RFC 5890: Internationalized Domain Names in Applications
(IDNA): Definitions and Document Framework";
}
typedef host {
type union {
type inet:ip-address;
type inet:domain-name;
}
description
"The host type represents either an IP address or a DNS
domain name.";
}
typedef uri {
type string;
description
"The uri type represents a Uniform Resource Identifier
(URI) as defined by STD 66.
Objects using the uri type MUST be in US-ASCII encoding,
and MUST be normalized as described by RFC 3986 Sections
6.2.1, 6.2.2.1, and 6.2.2.2. All unnecessary
percent-encoding is removed, and all case-insensitive
characters are set to lowercase except for hexadecimal
digits, which are normalized to uppercase as described in
Section 6.2.2.1.
The purpose of this normalization is to help provide
unique URIs. Note that this normalization is not
sufficient to provide uniqueness. Two URIs that are
textually distinct after this normalization may still be
equivalent.
Objects using the uri type may restrict the schemes that
they permit. For example, 'data:' and 'urn:' schemes
might not be appropriate.
A zero-length URI is not a valid URI. This can be used to
express 'URI absent' where required.
In the value set and its semantics, this type is equivalent
to the Uri SMIv2 textual convention defined in RFC 5017.";
reference
"RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
Group: Uniform Resource Identifiers (URIs), URLs,
and Uniform Resource Names (URNs): Clarifications
and Recommendations
RFC 5017: MIB Textual Conventions for Uniform Resource
Identifiers (URIs)";
}
}
module ietf-yang-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
prefix "yang";
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: David Kessens
<mailto:david.kessens@nsn.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>";
description
"This module contains a collection of generally useful derived
YANG data types.
Copyright (c) 2013 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 6991; see
the RFC itself for full legal notices.";
revision 2013-07-15 {
description
"This revision adds the following new data types:
- yang-identifier
- hex-string
- uuid
- dotted-quad";
reference
"RFC 6991: Common YANG Data Types";
}
revision 2010-09-24 {
description
"Initial revision.";
reference
"RFC 6021: Common YANG Data Types";
}
/*** collection of counter and gauge types ***/
typedef counter32 {
type uint32;
description
"The counter32 type represents a non-negative integer
that monotonically increases until it reaches a
maximum value of 2^32-1 (4294967295 decimal), when it
wraps around and starts increasing again from zero.
Counters have no defined 'initial' value, and thus, a
single value of a counter has (in general) no information
content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system, and at other times as specified in the
description of a schema node using this type. If such
other times can occur, for example, the creation of
a schema node of type counter32 at times other than
re-initialization, then a corresponding schema node
should be defined, with an appropriate type, to indicate
the last discontinuity.
The counter32 type should not be used for configuration
schema nodes. A default statement SHOULD NOT be used in
combination with the type counter32.
In the value set and its semantics, this type is equivalent
to the Counter32 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef zero-based-counter32 {
type yang:counter32;
default "0";
description
"The zero-based-counter32 type represents a counter32
that has the defined 'initial' value zero.
A schema node of this type will be set to zero (0) on creation
and will thereafter increase monotonically until it reaches
a maximum value of 2^32-1 (4294967295 decimal), when it
wraps around and starts increasing again from zero.
Provided that an application discovers a new schema node
of this type within the minimum time to wrap, it can use the
'initial' value as a delta. It is important for a management
station to be aware of this minimum time and the actual time
between polls, and to discard data if the actual time is too
long or there is no defined minimum time.
In the value set and its semantics, this type is equivalent
to the ZeroBasedCounter32 textual convention of the SMIv2.";
reference
"RFC 4502: Remote Network Monitoring Management Information
Base Version 2";
}
typedef counter64 {
type uint64;
description
"The counter64 type represents a non-negative integer
that monotonically increases until it reaches a
maximum value of 2^64-1 (18446744073709551615 decimal),
when it wraps around and starts increasing again from zero.
Counters have no defined 'initial' value, and thus, a
single value of a counter has (in general) no information
content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system, and at other times as specified in the
description of a schema node using this type. If such
other times can occur, for example, the creation of
a schema node of type counter64 at times other than
re-initialization, then a corresponding schema node
should be defined, with an appropriate type, to indicate
the last discontinuity.
The counter64 type should not be used for configuration
schema nodes. A default statement SHOULD NOT be used in
combination with the type counter64.
In the value set and its semantics, this type is equivalent
to the Counter64 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef zero-based-counter64 {
type yang:counter64;
default "0";
description
"The zero-based-counter64 type represents a counter64 that
has the defined 'initial' value zero.
A schema node of this type will be set to zero (0) on creation
and will thereafter increase monotonically until it reaches
a maximum value of 2^64-1 (18446744073709551615 decimal),
when it wraps around and starts increasing again from zero.
Provided that an application discovers a new schema node
of this type within the minimum time to wrap, it can use the
'initial' value as a delta. It is important for a management
station to be aware of this minimum time and the actual time
between polls, and to discard data if the actual time is too
long or there is no defined minimum time.
In the value set and its semantics, this type is equivalent
to the ZeroBasedCounter64 textual convention of the SMIv2.";
reference
"RFC 2856: Textual Conventions for Additional High Capacity
Data Types";
}
typedef gauge32 {
type uint32;
description
"The gauge32 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
cannot be greater than 2^32-1 (4294967295 decimal), and
the minimum value cannot be smaller than 0. The value of
a gauge32 has its maximum value whenever the information
being modeled is greater than or equal to its maximum
value, and has its minimum value whenever the information
being modeled is smaller than or equal to its minimum value.
If the information being modeled subsequently decreases
below (increases above) the maximum (minimum) value, the
gauge32 also decreases (increases).
In the value set and its semantics, this type is equivalent
to the Gauge32 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef gauge64 {
type uint64;
description
"The gauge64 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
cannot be greater than 2^64-1 (18446744073709551615), and
the minimum value cannot be smaller than 0. The value of
a gauge64 has its maximum value whenever the information
being modeled is greater than or equal to its maximum
value, and has its minimum value whenever the information
being modeled is smaller than or equal to its minimum value.
If the information being modeled subsequently decreases
below (increases above) the maximum (minimum) value, the
gauge64 also decreases (increases).
In the value set and its semantics, this type is equivalent
to the CounterBasedGauge64 SMIv2 textual convention defined
in RFC 2856";
reference
"RFC 2856: Textual Conventions for Additional High Capacity
Data Types";
}
/*** collection of identifier-related types ***/
typedef object-identifier {
type string {
pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*))))'
+ '(\.(0|([1-9]\d*)))*';
}
description
"The object-identifier type represents administratively
assigned names in a registration-hierarchical-name tree.
Values of this type are denoted as a sequence of numerical
non-negative sub-identifier values. Each sub-identifier
value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers
are separated by single dots and without any intermediate
whitespace.
The ASN.1 standard restricts the value space of the first
sub-identifier to 0, 1, or 2. Furthermore, the value space
of the second sub-identifier is restricted to the range
0 to 39 if the first sub-identifier is 0 or 1. Finally,
the ASN.1 standard requires that an object identifier
has always at least two sub-identifiers. The pattern
captures these restrictions.
Although the number of sub-identifiers is not limited,
module designers should realize that there may be
implementations that stick with the SMIv2 limit of 128
sub-identifiers.
This type is a superset of the SMIv2 OBJECT IDENTIFIER type
since it is not restricted to 128 sub-identifiers. Hence,
this type SHOULD NOT be used to represent the SMIv2 OBJECT
IDENTIFIER type; the object-identifier-128 type SHOULD be
used instead.";
reference
"ISO9834-1: Information technology -- Open Systems
Interconnection -- Procedures for the operation of OSI
Registration Authorities: General procedures and top
arcs of the ASN.1 Object Identifier tree";
}
typedef object-identifier-128 {
type object-identifier {
pattern '\d*(\.\d*){1,127}';
}
description
"This type represents object-identifiers restricted to 128
sub-identifiers.
In the value set and its semantics, this type is equivalent
to the OBJECT IDENTIFIER type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef yang-identifier {
type string {
length "1..max";
pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
pattern '.|..|[^xX].*|.[^mM].*|..[^lL].*';
}
description
"A YANG identifier string as defined by the 'identifier'
rule in Section 12 of RFC 6020. An identifier must
start with an alphabetic character or an underscore
followed by an arbitrary sequence of alphabetic or
numeric characters, underscores, hyphens, or dots.
A YANG identifier MUST NOT start with any possible
combination of the lowercase or uppercase character
sequence 'xml'.";
reference
"RFC 6020: YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)";
}
/*** collection of types related to date and time***/
typedef date-and-time {
type string {
pattern '\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?'
+ '(Z|[\+\-]\d{2}:\d{2})';
}
description
"The date-and-time type is a profile of the ISO 8601
standard for representation of dates and times using the
Gregorian calendar. The profile is defined by the
date-time production in Section 5.6 of RFC 3339.
The date-and-time type is compatible with the dateTime XML
schema type with the following notable exceptions:
(a) The date-and-time type does not allow negative years.
(b) The date-and-time time-offset -00:00 indicates an unknown
time zone (see RFC 3339) while -00:00 and +00:00 and Z
all represent the same time zone in dateTime.
(c) The canonical format (see below) of data-and-time values
differs from the canonical format used by the dateTime XML
schema type, which requires all times to be in UTC using
the time-offset 'Z'.
This type is not equivalent to the DateAndTime textual
convention of the SMIv2 since RFC 3339 uses a different
separator between full-date and full-time and provides
higher resolution of time-secfrac.
The canonical format for date-and-time values with a known time
zone uses a numeric time zone offset that is calculated using
the device's configured known offset to UTC time. A change of
the device's offset to UTC time will cause date-and-time values
to change accordingly. Such changes might happen periodically
in case a server follows automatically daylight saving time
(DST) time zone offset changes. The canonical format for
date-and-time values with an unknown time zone (usually
referring to the notion of local time) uses the time-offset
-00:00.";
reference
"RFC 3339: Date and Time on the Internet: Timestamps
RFC 2579: Textual Conventions for SMIv2
XSD-TYPES: XML Schema Part 2: Datatypes Second Edition";
}
typedef timeticks {
type uint32;
description
"The timeticks type represents a non-negative integer that
represents the time, modulo 2^32 (4294967296 decimal), in
hundredths of a second between two epochs. When a schema
node is defined that uses this type, the description of
the schema node identifies both of the reference epochs.
In the value set and its semantics, this type is equivalent
to the TimeTicks type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef timestamp {
type yang:timeticks;
description
"The timestamp type represents the value of an associated
timeticks schema node at which a specific occurrence
happened. The specific occurrence must be defined in the
description of any schema node defined using this type. When
the specific occurrence occurred prior to the last time the
associated timeticks attribute was zero, then the timestamp
value is zero. Note that this requires all timestamp values
to be reset to zero when the value of the associated timeticks
attribute reaches 497+ days and wraps around to zero.
The associated timeticks schema node must be specified
in the description of any schema node using this type.
In the value set and its semantics, this type is equivalent
to the TimeStamp textual convention of the SMIv2.";
reference
"RFC 2579: Textual Conventions for SMIv2";
}
/*** collection of generic address types ***/
typedef phys-address {
type string {
pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
}
description
"Represents media- or physical-level addresses represented
as a sequence octets, each octet represented by two hexadecimal
numbers. Octets are separated by colons. The canonical
representation uses lowercase characters.
In the value set and its semantics, this type is equivalent
to the PhysAddress textual convention of the SMIv2.";
reference
"RFC 2579: Textual Conventions for SMIv2";
}
typedef mac-address {
type string {
pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}';
}
description
"The mac-address type represents an IEEE 802 MAC address.
The canonical representation uses lowercase characters.
In the value set and its semantics, this type is equivalent
to the MacAddress textual convention of the SMIv2.";
reference
"IEEE 802: IEEE Standard for Local and Metropolitan Area
Networks: Overview and Architecture
RFC 2579: Textual Conventions for SMIv2";
}
/*** collection of XML-specific types ***/
typedef xpath1.0 {
type string;
description
"This type represents an XPATH 1.0 expression.
When a schema node is defined that uses this type, the
description of the schema node MUST specify the XPath
context in which the XPath expression is evaluated.";
reference
"XPATH: XML Path Language (XPath) Version 1.0";
}
/*** collection of string types ***/
typedef hex-string {
type string {
pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
}
description
"A hexadecimal string with octets represented as hex digits
separated by colons. The canonical representation uses
lowercase characters.";
}
typedef uuid {
type string {
pattern '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-'
+ '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}';
}
description
"A Universally Unique IDentifier in the string representation
defined in RFC 4122. The canonical representation uses
lowercase characters.
The following is an example of a UUID in string representation:
f81d4fae-7dec-11d0-a765-00a0c91e6bf6
";
reference
"RFC 4122: A Universally Unique IDentifier (UUID) URN
Namespace";
}
typedef dotted-quad {
type string {
pattern
'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+ '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])';
}
description
"An unsigned 32-bit number expressed in the dotted-quad
notation, i.e., four octets written as decimal numbers
and separated with the '.' (full stop) character.";
}
}
...@@ -165,6 +165,16 @@ def inventory(device_uuid: str): ...@@ -165,6 +165,16 @@ def inventory(device_uuid: str):
context_client.close() context_client.close()
return render_template('device/inventory.html', device=device_obj) return render_template('device/inventory.html', device=device_obj)
@device.route('logical/<path:device_uuid>', methods=['GET', 'POST'])
def logical(device_uuid: str):
context_client.connect()
device_obj = get_device(context_client, device_uuid, rw_copy=False)
if device_obj is None:
flash('Device({:s}) not found'.format(str(device_uuid)), 'danger')
device_obj = Device()
context_client.close()
return render_template('device/logical.html', device=device_obj)
@device.get('<path:device_uuid>/delete') @device.get('<path:device_uuid>/delete')
def delete(device_uuid): def delete(device_uuid):
try: try:
......
...@@ -51,6 +51,7 @@ ...@@ -51,6 +51,7 @@
<th scope="col">Config Rules</th> <th scope="col">Config Rules</th>
<th scope="col"></th> <th scope="col"></th>
<th scope="col"></th> <th scope="col"></th>
<th scope="col"></th>
</tr> </tr>
</thead> </thead>
<tbody> <tbody>
...@@ -83,6 +84,14 @@ ...@@ -83,6 +84,14 @@
</svg> </svg>
</a> </a>
</td> </td>
<td>
<a href="{{ url_for('device.logical', device_uuid=device.device_id.device_uuid.uuid) }}">
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-info-circle" viewBox="0 0 16 16">
<path d="M8 15A7 7 0 1 1 8 1a7 7 0 0 1 0 14m0 1A8 8 0 1 0 8 0a8 8 0 0 0 0 16"/>
<path d="m8.93 6.588-2.29.287-.082.38.45.083c.294.07.352.176.288.469l-.738 3.468c-.194.897.105 1.319.808 1.319.545 0 1.178-.252 1.465-.598l.088-.416c-.2.176-.492.246-.686.246-.275 0-.375-.193-.304-.533zM9 4.5a1 1 0 1 1-2 0 1 1 0 0 1 2 0"/>
</svg>
</a>
</td>
</tr> </tr>
{% endfor %} {% endfor %}
{% else %} {% else %}
......
This diff is collapsed.