Skip to content
Snippets Groups Projects
Commit 6d86ad67 authored by delacal's avatar delacal
Browse files

Initial implementation of the L3 security status KPIs

parent fe990d3b
No related branches found
No related tags found
2 merge requests!142Release TeraFlowSDN 2.1,!93Updated L3 components + scalability
...@@ -20,6 +20,7 @@ import grpc ...@@ -20,6 +20,7 @@ import grpc
import numpy as np import numpy as np
import onnxruntime as rt import onnxruntime as rt
import logging import logging
from time import sleep
from common.proto.l3_centralizedattackdetector_pb2 import Empty from common.proto.l3_centralizedattackdetector_pb2 import Empty
from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer
...@@ -38,74 +39,301 @@ from common.proto.context_pb2 import Timestamp ...@@ -38,74 +39,301 @@ from common.proto.context_pb2 import Timestamp
from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient
from multiprocessing import Process, Queue
LOGGER = logging.getLogger(__name__) LOGGER = logging.getLogger(__name__)
current_dir = os.path.dirname(os.path.abspath(__file__)) current_dir = os.path.dirname(os.path.abspath(__file__))
MODEL_FILE = os.path.join(current_dir, "ml_model/crypto_5g_rf_spider_features.onnx") MODEL_FILE = os.path.join(current_dir, "ml_model/crypto_5g_rf_spider_features.onnx")
classification_threshold = os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5)
class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer): class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer):
""" """
Initialize variables, prediction model and clients of components used by CAD Initialize variables, prediction model and clients of components used by CAD
""" """
def __init__(self): def __init__(self):
LOGGER.info("Creating Centralized Attack Detector Service") LOGGER.info("Creating Centralized Attack Detector Service")
self.inference_values = [] self.inference_values = Queue()
self.inference_results = Queue()
self.model = rt.InferenceSession(MODEL_FILE) self.model = rt.InferenceSession(MODEL_FILE)
self.input_name = self.model.get_inputs()[0].name self.input_name = self.model.get_inputs()[0].name
self.label_name = self.model.get_outputs()[0].name self.label_name = self.model.get_outputs()[0].name
self.prob_name = self.model.get_outputs()[1].name self.prob_name = self.model.get_outputs()[1].name
self.monitoring_client = MonitoringClient() self.monitoring_client = MonitoringClient()
self.predicted_class_kpi_id = None self.service_ids = []
self.class_probability_kpi_id = None self.monitored_kpis = {
"l3_security_status": {
"kpi_id": None,
"description": "L3 - Confidence of the cryptomining detector in the security status in the last time interval of the service {service_id}",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN, # TODO: change this to KPI_L3_SECURITY_STATUS and add it to kpi_sample_types.proto
"service_ids": [],
},
"l3_ml_model_confidence": {
"kpi_id": None,
"description": "L3 - Security status of the service in a time interval of the service {service_id} (“0” if no attack has been detected on the service and “1” if a cryptomining attack has been detected)",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN, # TODO: change this to KPI_L3_ML_CONFIDENCE and add it to kpi_sample_types.proto
"service_ids": [],
},
"l3_unique_attack_conns": {
"kpi_id": None,
"description": "L3 - Number of attack connections detected in a time interval of the service {service_id} (attacks of the same connection [origin IP, origin port, destination IP and destination port] are only considered once)",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN, # TODO: change this to KPI_UNIQUE_ATTACK_CONNS and add it to kpi_sample_types.proto
"service_ids": [],
},
"l3_unique_compromised_clients": {
"kpi_id": None,
"description": "L3 - Number of unique compromised clients of the service in a time interval of the service {service_id} (attacks from the same origin IP are only considered once)",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN, # TODO: change this to KPI_UNIQUE_COMPROMISED_CLIENTS and add it to kpi_sample_types.proto
"service_ids": [],
},
"l3_unique_attackers": {
"kpi_id": None,
"description": "L3 - number of unique attackers of the service in a time interval of the service {service_id} (attacks from the same destination IP are only considered once)",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN, # TODO: change this to KPI_UNIQUE_ATTACKERS and add it to kpi_sample_types.proto
"service_ids": [],
},
}
self.attackmitigator_client = l3_attackmitigatorClient() self.attackmitigator_client = l3_attackmitigatorClient()
""" # Environment variables
Create the Cryptomining Detector Predicted Class KPI for a service and add it to the Monitoring Client self.CLASSIFICATION_THRESHOLD = os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5)
-input: self.MONITORED_KPIS_TIME_INTERVAL_AGG = os.getenv("MONITORED_KPIS_TIME_INTERVAL_AGG", 5)
+ client: Monitoring Client object where the KPI will be tracked
+ service_id: service ID where the KPI will be created
-output: KPI identifier representing the Cryptomining Detector Predicted Class KPI
"""
def create_predicted_class_kpi(self, client: MonitoringClient, service_id):
kpi_description: KpiDescriptor = KpiDescriptor()
kpi_description.kpi_description = "Cryptomining Detector Predicted Class (service: {})".format(service_id)
kpi_description.service_id.service_uuid.uuid = service_id.service_uuid.uuid
kpi_description.kpi_sample_type = KpiSampleType.KPISAMPLETYPE_UNKNOWN
new_kpi = client.SetKpi(kpi_description)
LOGGER.info("Created Predicted Class KPI {}...".format(new_kpi.kpi_id)) # Constants
self.NORMAL_CLASS = 0
self.CRYPTO_CLASS = 1
return new_kpi # start monitoring process
self.monitoring_process = Process(
target=self.monitoring_process, args=(self.inference_values, self.inference_results)
)
self.monitoring_process.start()
""" """
Create the Cryptomining Detector Prediction KPI for a service and add it to the Monitoring Client Create a monitored KPI for a specific service and add it to the Monitoring Client
-input: -input:
+ client: Monitoring Client object where the KPI will be tracked + client: Monitoring Client object where the KPI will be tracked
+ service_id: service ID where the KPI will be created + service_id: service ID where the KPI will be monitored
-output: KPI identifier representing the Cryptomining Detector Prediction KPI -output: KPI identifier representing the KPI
""" """
def create_class_prob_kpi(self, client: MonitoringClient, service_id):
def create_kpi(self, client: MonitoringClient, service_id, kpi_description, kpi_sample_type):
kpi_description: KpiDescriptor = KpiDescriptor() kpi_description: KpiDescriptor = KpiDescriptor()
kpi_description.kpi_description = "Cryptomining Detector Prediction (service: {})".format(service_id) kpi_description.kpi_description = kpi_description
kpi_description.service_id.service_uuid.uuid = service_id.service_uuid.uuid kpi_description.service_id.service_uuid.uuid = service_id.service_uuid.uuid
kpi_description.kpi_sample_type = KpiSampleType.KPISAMPLETYPE_UNKNOWN kpi_description.kpi_sample_type = kpi_sample_type
new_kpi = client.SetKpi(kpi_description) new_kpi = client.SetKpi(kpi_description)
LOGGER.info("Created Class Probability KPI {}...".format(new_kpi.kpi_id)) LOGGER.info("Created KPI {}...".format(kpi_sample_type))
return new_kpi return new_kpi
"""
Create the monitored KPIs for a specific service, add them to the Monitoring Client and store their identifiers in the monitored_kpis dictionary
-input:
+ service_id: service ID where the KPIs will be monitored
-output: None
"""
def create_kpis(self, service_id):
# for now, all the KPIs are created for all the services from which requests are received
for kpi in self.monitored_kpis:
created_kpi = self.create_kpi(
self.monitoring_client,
service_id,
self.monitored_kpis[kpi]["description"],
self.monitored_kpis[kpi]["kpi_sample_type"],
)
self.monitored_kpis[kpi]["kpi_id"] = created_kpi.kpi_id
self.monitored_kpis[kpi]["service_ids"].append(service_id.service_uuid.uuid)
def monitor_kpis(self):
while True:
# get all information from the inference_values queue
monitor_inference_values = []
for i in range(self.inference_values.qsize()):
monitor_inference_values.append(self.inference_values.get())
# get all information from the inference_results queue
monitor_inference_results = []
for i in range(self.inference_results.qsize()):
monitor_inference_results.append(self.inference_results.get())
for service_id in self.service_ids:
time_interval = self.MONITORED_KPIS_TIME_INTERVAL_AGG
time_interval_start = datetime.utcnow()
time_interval_end = time_interval_start + time_interval
# L3 security status
kpi_security_status = Kpi()
kpi_security_status.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_security_status"]["kpi_id"].kpi_id)
# get the output.tag of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
outputs_last_time_interval = []
for i in range(self.monitor_inference_results):
if (
self.monitor_inference_results[i]["timestamp"] >= time_interval_start
and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
and self.monitor_inference_results[i]["service_id"] == service_id
and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
):
outputs_last_time_interval.append(self.monitor_inference_results[i]["output"]["tag"])
kpi_security_status.kpi_value.intVal = (
0 if np.all(outputs_last_time_interval == self.NORMAL_CLASS) else 1
)
# L3 ML model confidence
kpi_conf = Kpi()
kpi_conf.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_ml_model_confidence"]["kpi_id"].kpi_id)
# get the output.confidence of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
confidences_normal_last_time_interval = []
confidences_crypto_last_time_interval = []
for i in range(self.monitor_inference_results):
if (
self.monitor_inference_results[i]["timestamp"] >= time_interval_start
and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
and self.monitor_inference_results[i]["service_id"] == service_id
and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
):
if self.monitor_inference_results[i]["output"]["tag"] == self.NORMAL_CLASS:
confidences_normal_last_time_interval.append(
self.monitor_inference_results[i]["output"]["confidence"]
)
elif self.monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
confidences_crypto_last_time_interval.append(
self.monitor_inference_results[i]["output"]["confidence"]
)
kpi_conf.kpi_value.intVal = (
np.mean(confidences_crypto_last_time_interval)
if np.all(outputs_last_time_interval == self.CRYPTO_CLASS)
else np.mean(confidences_normal_last_time_interval)
)
# L3 unique attack connections
kpi_unique_attack_conns = Kpi()
kpi_unique_attack_conns.kpi_id.kpi_id.CopyFrom(
self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"].kpi_id
)
# get the number of unique attack connections (grouping by origin IP, origin port, destination IP, destination port) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
num_unique_attack_conns_last_time_interval = 0
unique_attack_conns_last_time_interval = []
for i in range(self.monitor_inference_results):
if (
self.monitor_inference_results[i]["timestamp"] >= time_interval_start
and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
and self.monitor_inference_results[i]["service_id"] == service_id
and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
):
if self.monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
current_attack_conn = {
"ip_o": self.monitor_inference_results[i]["input"]["src_ip"],
"port_o": self.monitor_inference_results[i]["input"]["src_port"],
"ip_d": self.monitor_inference_results[i]["input"]["dst_ip"],
"port_d": self.monitor_inference_results[i]["input"]["dst_port"],
}
for j in range(unique_attack_conns_last_time_interval):
if current_attack_conn == unique_attack_conns_last_time_interval[j]:
break
num_unique_attack_conns_last_time_interval += 1
unique_attack_conns_last_time_interval.append(current_attack_conn)
kpi_unique_attack_conns.kpi_value.intVal = num_unique_attack_conns_last_time_interval
# L3 unique compromised clients
kpi_unique_compromised_clients = Kpi()
kpi_unique_compromised_clients.kpi_id.kpi_id.CopyFrom(
self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"].kpi_id
)
# get the number of unique compromised clients (grouping by origin IP) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
num_unique_compromised_clients_last_time_interval = 0
unique_compromised_clients_last_time_interval = []
for i in range(self.monitor_inference_results):
if (
self.monitor_inference_results[i]["timestamp"] >= time_interval_start
and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
and self.monitor_inference_results[i]["service_id"] == service_id
and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
):
if self.monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
if (
self.monitor_inference_results[i]["output"]["ip_o"]
not in unique_compromised_clients_last_time_interval
):
unique_compromised_clients_last_time_interval.append(
self.monitor_inference_results[i]["output"]["ip_o"]
)
num_unique_compromised_clients_last_time_interval += 1
kpi_unique_compromised_clients.kpi_value.intVal = num_unique_compromised_clients_last_time_interval
# L3 unique attackers
kpi_unique_attackers = Kpi()
kpi_unique_attackers.kpi_id.kpi_id.CopyFrom(
self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"].kpi_id
)
# get the number of unique attackers (grouping by destination ip) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
num_unique_attackers_last_time_interval = 0
unique_attackers_last_time_interval = []
for i in range(self.monitor_inference_results):
if (
self.monitor_inference_results[i]["timestamp"] >= time_interval_start
and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
and self.monitor_inference_results[i]["service_id"] == service_id
and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
):
if self.monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
if (
self.monitor_inference_results[i]["output"]["ip_d"]
not in unique_attackers_last_time_interval
):
unique_attackers_last_time_interval.append(
self.monitor_inference_results[i]["output"]["ip_d"]
)
num_unique_attackers_last_time_interval += 1
kpi_unique_attackers.kpi_value.intVal = num_unique_attackers_last_time_interval
timestamp = Timestamp()
timestamp.timestamp = timestamp_utcnow_to_float()
kpi_security_status.timestamp.CopyFrom(timestamp)
kpi_conf.timestamp.CopyFrom(timestamp)
kpi_unique_attack_conns.timestamp.CopyFrom(timestamp)
kpi_unique_compromised_clients.timestamp.CopyFrom(timestamp)
kpi_unique_attackers.timestamp.CopyFrom(timestamp)
self.monitoring_client.IncludeKpi(kpi_security_status)
self.monitoring_client.IncludeKpi(kpi_conf)
self.monitoring_client.IncludeKpi(kpi_unique_attack_conns)
self.monitoring_client.IncludeKpi(kpi_unique_compromised_clients)
self.monitoring_client.IncludeKpi(kpi_unique_attackers)
sleep(self.MONITORED_KPIS_TIME_INTERVAL_AGG)
""" """
Classify connection as standard traffic or cryptomining attack and return results Classify connection as standard traffic or cryptomining attack and return results
-input: -input:
+ request: L3CentralizedattackdetectorMetrics object with connection features information + request: L3CentralizedattackdetectorMetrics object with connection features information
-output: L3AttackmitigatorOutput object with information about the assigned class and prediction confidence -output: L3AttackmitigatorOutput object with information about the assigned class and prediction confidence
""" """
def make_inference(self, request): def make_inference(self, request):
x_data = np.array( x_data = np.array(
[ [
...@@ -145,16 +373,16 @@ class l3_centralizedattackdetectorServiceServicerImpl(L3Centralizedattackdetecto ...@@ -145,16 +373,16 @@ class l3_centralizedattackdetectorServiceServicerImpl(L3Centralizedattackdetecto
"time_end": request.time_end, "time_end": request.time_end,
} }
if predictions[0][1] >= classification_threshold: if predictions[0][1] >= self.CLASSIFICATION_THRESHOLD:
output_message["confidence"] = predictions[0][1] output_message["confidence"] = predictions[0][1]
output_message["tag_name"] = "Crypto" output_message["tag_name"] = "Crypto"
output_message["tag"] = 1 output_message["tag"] = self.CRYPTO_CLASS
else: else:
output_message["confidence"] = predictions[0][0] output_message["confidence"] = predictions[0][0]
output_message["tag_name"] = "Normal" output_message["tag_name"] = "Normal"
output_message["tag"] = 0 output_message["tag"] = self.NORMAL_CLASS
return L3AttackmitigatorOutput(**output_message) return output_message
""" """
Receive features from Attack Mitigator, predict attack and communicate with Attack Mitigator Receive features from Attack Mitigator, predict attack and communicate with Attack Mitigator
...@@ -162,50 +390,28 @@ class l3_centralizedattackdetectorServiceServicerImpl(L3Centralizedattackdetecto ...@@ -162,50 +390,28 @@ class l3_centralizedattackdetectorServiceServicerImpl(L3Centralizedattackdetecto
+ request: L3CentralizedattackdetectorMetrics object with connection features information + request: L3CentralizedattackdetectorMetrics object with connection features information
-output: Empty object with a message about the execution of the function -output: Empty object with a message about the execution of the function
""" """
def SendInput(self, request, context): def SendInput(self, request, context):
# Store the data sent in the request # Store the data sent in the request
self.inference_values.append(request) self.inference_values.put({"request": request, "timestamp": datetime.now()})
# Perform inference with the data sent in the request # Perform inference with the data sent in the request
logging.info("Performing inference...") logging.info("Performing inference...")
output = self.make_inference(request) cryptomining_detector_output = self.make_inference(request)
logging.info("Inference performed correctly") logging.info("Inference performed correctly")
# Include monitored KPIs values # Store the results of the inference that will be later used to monitor the KPIs
service_id = request.service_id self.inference_results.put({"output": cryptomining_detector_output, "timestamp": datetime.now()})
if self.predicted_class_kpi_id is None: service_id = request.service_id
self.predicted_class_kpi_id = self.create_predicted_class_kpi(self.monitoring_client, service_id)
if self.class_probability_kpi_id is None:
self.class_probability_kpi_id = self.create_class_prob_kpi(self.monitoring_client, service_id)
# Packet Aggregation Features -> DAD -> CAD -> ML -> (2 Instantaneous Value: higher class probability, predicted class) -> Monitoring
# In addition, two counters:
# Counter 1: Total number of crypto attack connections
# Counter 2: Rate of crypto attack connections with respect to the total number of connections
# Predicted class KPI
kpi_class = Kpi()
kpi_class.kpi_id.kpi_id.CopyFrom(self.predicted_class_kpi_id.kpi_id)
kpi_class.kpi_value.int32Val = 1 if output.tag_name == "Crypto" else 0
# Class probability KPI
kpi_prob = Kpi()
kpi_prob.kpi_id.kpi_id.CopyFrom(self.class_probability_kpi_id.kpi_id)
kpi_prob.kpi_value.floatVal = output.confidence
timestamp = Timestamp()
timestamp.timestamp = timestamp_utcnow_to_float()
kpi_class.timestamp.CopyFrom(timestamp) # Check if a request of a new service has been received and, if so, create the monitored KPIs for that service
kpi_prob.timestamp.CopyFrom(kpi_class.timestamp) if service_id not in self.service_ids:
self.create_kpis(service_id)
self.service_ids.append(service_id)
self.monitoring_client.IncludeKpi(kpi_class)
self.monitoring_client.IncludeKpi(kpi_prob)
# Only notify Attack Mitigator when a cryptomining connection has been detected # Only notify Attack Mitigator when a cryptomining connection has been detected
if output.tag_name == "Crypto": if cryptomining_detector_output["tag_name"] == "Crypto":
logging.info("Crypto attack detected") logging.info("Crypto attack detected")
# Notify the Attack Mitigator component about the attack # Notify the Attack Mitigator component about the attack
...@@ -215,7 +421,8 @@ class l3_centralizedattackdetectorServiceServicerImpl(L3Centralizedattackdetecto ...@@ -215,7 +421,8 @@ class l3_centralizedattackdetectorServiceServicerImpl(L3Centralizedattackdetecto
try: try:
logging.info("Sending the connection information to the Attack Mitigator component...") logging.info("Sending the connection information to the Attack Mitigator component...")
response = self.attackmitigator_client.SendOutput(output) message = L3AttackmitigatorOutput(**cryptomining_detector_output)
response = self.attackmitigator_client.SendOutput(message)
logging.info( logging.info(
"Attack Mitigator notified and received response: ", response.message "Attack Mitigator notified and received response: ", response.message
) # FIX No message received ) # FIX No message received
...@@ -231,6 +438,7 @@ class l3_centralizedattackdetectorServiceServicerImpl(L3Centralizedattackdetecto ...@@ -231,6 +438,7 @@ class l3_centralizedattackdetectorServiceServicerImpl(L3Centralizedattackdetecto
return Empty(message="Ok, information received (no attack detected)") return Empty(message="Ok, information received (no attack detected)")
""" """
def GetOutput(self, request, context): def GetOutput(self, request, context):
logging.info("Returning inference output...") logging.info("Returning inference output...")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment