Skip to content
Snippets Groups Projects
Commit 541f7237 authored by Lluis Gifre Renom's avatar Lluis Gifre Renom
Browse files

Forecaster component:

- Intermediate backup (not functional)
parent 71f56b76
Branches
Tags
2 merge requests!235Release TeraFlowSDN 3.0,!160Resolve "(CTTC) Forecaster component"
......@@ -12,7 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import grpc, logging
import grpc, logging, numpy, pandas
from datetime import datetime
from forecaster.Config import FORECAST_TO_HISTORY_RATIO
from prophet import Prophet
from sklearn.ensemble import RandomForestRegressor
from statistics import mean
from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method
from common.proto.forecaster_pb2 import (
ForecastLinkCapacityReply, ForecastLinkCapacityRequest,
......@@ -26,19 +32,93 @@ LOGGER = logging.getLogger(__name__)
METRICS_POOL = MetricsPool('Forecaster', 'RPC')
def getTopology(topologyId):
if topologyId == "1":
df = pandas.read_csv('dataset.csv')
elif topologyId == "2":
df = pandas.read_csv('dataset2.csv')
print(df.columns)
#Adapting the dataframe to have the same structure
df = df.drop(['Unnamed: 0', 'source', 'target'], axis=1)
df.rename(columns = {'id':'linkid'}, inplace = True)
df.rename(columns = {'demandValue':'y'}, inplace = True)
else:
df = pandas.read_csv('./PythonGrpc-main/dataset.csv')
return df
def compute_forecast(df : pandas.DataFrame):
trainset = df[int(df.shape[0] / 10):df.shape[0]]
testset = df[0:int(df.shape[0] / 10)]
rf = RandomForestRegressor(n_estimators = 600, random_state = 42)
rf.fit(trainset.drop(['y'], axis=1), trainset['y'])
forecast = rf.predict(testset.drop(['y'], axis=1))
average_result = round(mean(testset['y']), 2)
class ForecasterServiceServicerImpl(ForecasterServiceServicer):
def __init__(self) -> None:
LOGGER.debug('Creating Servicer...')
LOGGER.debug('Servicer Created')
def _forecast_link_capacity(self, forecast_window_seconds : float):
# history_window_seconds indicates the size of the train-set based on the
# requested size of the test-set and the configured history ratio
history_window_seconds = FORECAST_TO_HISTORY_RATIO * forecast_window_seconds
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def ForecastLinkCapacity(
self, request : ForecastLinkCapacityRequest, context : grpc.ServicerContext
) -> ForecastLinkCapacityReply:
forecast_window_seconds = request.forecast_window_seconds
df = getLink(request.link_id)
self._forecast_link_capacity(forecast_window_seconds)
return ForecastLinkCapacityReply()
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def ForecastTopologyCapacity(
self, request : ForecastTopologyCapacityRequest, context : grpc.ServicerContext
) -> ForecastTopologyCapacityReply:
forecast_window_seconds = request.forecast_window_seconds
df = getTopology(request.topology_id)
self._forecast_link_capacity(forecast_window_seconds)
return ForecastTopologyCapacityReply()
class GreeterServicer(greet_pb2_grpc.GreeterServicer):
def ComputeTopologyForecast(self, request, context):
df['ds'] = pandas.to_datetime(df['ds']) - datetime(1970, 1, 1)
df['ds'] = df['ds'].dt.total_seconds()
maximum = df['ds'].max()
minimum = maximum - history_window_seconds
print(f'The dates of the trainset would have the following range of values: From {minimum} until {maximum} ')
forecast_reply = greet_pb2.ForecastReply()
for linkid in df['linkid'].unique()[:10]:
print(linkid)
newdf = df[df.linkid == linkid ]
#converting linkid to float to avoid problems with machine learning, since there is only one option. It is converted to 1.0
newdf.loc[:,'linkid'] = 1.0
trainset = newdf[int(newdf.shape[0] / 10):newdf.shape[0]]
testset = newdf[0:int(newdf.shape[0] / 10)]
rf = RandomForestRegressor(n_estimators = 600, random_state = 42)
rf.fit(trainset.drop(['y'], axis=1), trainset['y'])
forecast = rf.predict(testset.drop(['y'], axis=1))
averageResult = round(mean(testset['y']), 2)
link_capacity = greet_pb2.LinkCapacity()
link_capacity.linkuuid = linkid
link_capacity.forecasted_capacity = averageResult
forecast_reply.LinkCapacityList.append(link_capacity)
return forecast_reply
Pseudocode for RPC method `ComputeTopologyForecast`:
```python
# Setting to configure the ratio between requested forecast and amount of historical data to be used for the forecast.
# E.g., if forecast window is 1 week, compute forecast based on 10 weeks of historical data.
FORECAST_TO_HISTORY_RATIO = 10
history_window_seconds = FORECAST_TO_HISTORY_RATIO * request.forecast_window_seconds
forecast_reply = ForecastTopologyCapacityReply()
topology = context_client.GetTopology(topology_id)
for link_id in topology.link_ids:
link = context_client.GetLink(link_id)
used_capacity_history_gbps = monitoring_client.GetKPIValue(link_id, KPI.LinkUsedCapacity, window=history_window_seconds)
forecast_used_capacity_gbps = compute_forecast(used_capacity_history_gbps, forecast_window_seconds)
forecast_reply.link_capacities.append(ForecastLinkCapacityReply(
link_id=link_id,
total_capacity_gbps=link.total_capacity_gbps,
current_used_capacity_gbps=link.used_capacity_gbps,
forecast_used_capacity_gbps=forecast_used_capacity_gbps
))
return forecast_reply
```
## PathComp Impact
After retrieving the topology, if the service has a duration constraint configured, the PathComp component should interrogate the Forecaster and request a topology forecast according to the requested duration of the service. The computed link capacity forecast should be used as link capacity in path computations.
```
link_capacities : Dict[str, float] = dict() # link_uuid => available_capacity_gbps
service_duration = get_service_duration(request.service)
if service_duration is None:
topology = context_client.GetTopologyDetails(topology_id)
for link in topology.links:
link_capacities[link.link_id.uuid] = link.available_capacity_gbps
else:
forecast_request = ForecastTopology(
topology_id = TopologyId(service.context_id, admin),
forecast_window_seconds = service.duration
)
forecast_reply = forecaster_client.ComputeTopologyForecast(forecast_request)
for link_capacity in forecast_reply.link_capacities:
total_capacity_gbps = link_capacity.total_capacity_gbps
forecast_used_capacity_gbps = link_capacity.forecast_used_capacity_gbps
forecast_available_capacity_gbps = total_capacity_gbps - forecast_used_capacity_gbps
link_capacities[link_capacity.link_id.uuid] = forecast_available_capacity_gbps
# Continue path computation passing link_capacities to the path comp algorithms.
```
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment