Skip to content
Snippets Groups Projects
Commit 223e1cd2 authored by Lluis Gifre Renom's avatar Lluis Gifre Renom
Browse files

Slice component:

- initial code blocks and details for slice grouping
parent a1fb0827
No related branches found
No related tags found
2 merge requests!142Release TeraFlowSDN 2.1,!64Slice Grouping
......@@ -12,5 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#deepdiff==5.8.*
numpy==1.23.*
scikit-learn==1.1.*
# SLICE GROUPING details
## Description
- Similar slice requests can share underlying services.
- Clustering algorithm for slice grouping.
- Consider both paths and SLA constraints.
- SLA monitored by slice group.
## TFS Target Objective
- Objective 3.2: Provisioning of multi-tenant transport network slices.
- Improve network resource usage by 30% by adopting multi-tenancy resource allocation algorithms.
- Optimal slice grouping: trade-offs between economies of scale and limitations as to which SLAs can be grouped together need to be considered.
- Optimal grouping of slices is required to maximise KPIs, such as resource utilisation, utility of the connectivity, and energy efficiency.
- In this context, trade-offs between the resulting control plane complexity and differential treatment of SLA classes should be considered.
## New Requirements
- User can select if slice grouping is performed per-slice request.
- Slice grouping introduces a clustering algorithm for finding service optimisation while preserving slice SLA.
- Service (re-)optimisation is provided.
## TFS Architecture Update
- Update Slice service RPC to include Slice Grouping.
- Use novel Slice model with SLA constraints.
- Use Policy Component with action to update services to apply slice grouping.
- Describe Slice service operation modes: per-request or user-triggered.
OSS/BSS --> Slice : Create Slice with SLA (slice)
Slice --> Slice : Slice Grouping (slice)
alt [slice can be grouped to other slice services]
// do nothing and return existing slice
else [slice needs new services]
Slice --> ... : normal logic
end alt
Slice --> OSS/BSS : slice
slice.proto:
rpc OrderSliceWithSLA(context.Slice) returns (context.SliceId) {} // If slice with SLA already exists, returns slice. If not, it creates it.
rpc RunSliceGrouping (context.Empty) returns (context.Empty) {} // Optimizes the underlying services and re-maps them to the requested slices.
# Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#import numpy as np
#import pandas as pd
from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from common.proto.context_pb2 import ContextId
from context.client.ContextClient import ContextClient
class SliceGrouper:
def __init__(self) -> None:
pass
def load_slices(self, context_uuid : str) -> None:
context_client = ContextClient()
context_client.ListSlices(ContextId)
X, y = make_blobs(n_samples=300, n_features=2, cluster_std=[(10,.1),(100,.01)],centers= [(10,.9), (100,.99)])
plt.scatter(X[:,0], X[:,1])
plt.show()
wcss = []
for i in range(1, 11):
kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans.fit(X)
wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
kmeans = KMeans(n_clusters=2, init='k-means++', max_iter=300, n_init=10, random_state=0)
pred_y = kmeans.fit_predict(X)
plt.scatter(X[:,0], X[:,1])
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red')
plt.ylabel('service-slo-availability')
plt.xlabel('service-slo-one-way-bandwidth')
ax = plt.subplot(1, 1, 1)
ax.set_ylim(bottom=0., top=1.)
ax.set_xlim(left=0.)
plt.show()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment