Scheduled maintenance on Saturday, 27 September 2025, from 07:00 AM to 4:00 PM GMT (09:00 AM to 6:00 PM CEST) - some services may be unavailable -

Skip to content
Snippets Groups Projects
Select Git revision
  • f28cab567c9318d2e8e2316b88a117d4cb1fd131
  • master default
  • feat/320-cttc-ietf-simap-basic-support-with-kafka-yang-push
  • feat/314-tid-new-service-for-ipowdm-configuration-fron-orchestrator-to-ipowdm-controller
  • feat/327-tid-new-service-to-ipowdm-controller-to-manage-transceivers-configuration-on-external-agent
  • feat/292-cttc-implement-integration-test-for-ryu-openflow
  • cnit_tapi
  • cnit-p2mp-premerge
  • feat/325-tid-nbi-e2e-to-manage-e2e-path-computation
  • feat/307-update-python-version-service
  • feat/326-tid-external-management-of-devices-telemetry-nbi
  • openroadm-flex-grid
  • feat/310-cttc-implement-nbi-connector-to-interface-with-osm-client
  • develop protected
  • feat/324-tid-nbi-ietf_l3vpn-deploy-fail
  • feat/321-add-support-for-gnmi-configuration-via-proto
  • feat/322-add-read-support-for-ipinfusion-devices-via-netconf
  • feat/323-add-support-for-restconf-protocol-in-devices
  • feat/policy-refactor
  • feat/192-cttc-implement-telemetry-backend-collector-gnmi-openconfig
  • feat/307-update-python-version
  • feat/telemetry-collector-int
  • v5.0.0 protected
  • v4.0.0 protected
  • demo-dpiab-eucnc2024
  • v3.0.0 protected
  • v2.1.0 protected
  • v2.0.0 protected
  • v1.0.0 protected
29 results

DriverFactory.py

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    messages.py NaN GiB
    # Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #      http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    import uuid
    import json
    from common.proto.kpi_manager_pb2        import KpiId
    from common.proto.analytics_frontend_pb2 import ( AnalyzerOperationMode,
                                                    Analyzer, AnalyzerId )
    
    def get_kpi_id_list():
        return ["6e22f180-ba28-4641-b190-2287bf448888", "1e22f180-ba28-4641-b190-2287bf446666"]
    
    def get_operation_list():
        return [ 'avg', 'max' ]     # possibilities ['avg', 'min', 'max', 'first', 'last', 'stdev']
    
    def get_threshold_dict():
        threshold_dict = {
            'avg_value'    : (20, 30),
            'min_value'    : (00, 10), 
            'max_value'    : (45, 50),
            'first_value'  : (00, 10),
            'last_value'   : (40, 50),
            'stdev_value'  : (00, 10),
        }
        # Filter threshold_dict based on the operation_list
        return {
            op + '_value': threshold_dict[op+'_value'] for op in get_operation_list() if op + '_value' in threshold_dict
        }
    
    def create_analyzer_id():
        _create_analyzer_id                  = AnalyzerId()
        # _create_analyzer_id.analyzer_id.uuid = str(uuid.uuid4())
        # _create_analyzer_id.analyzer_id.uuid = "efef4d95-1cf1-43c4-9742-95c283ddd7a6"
        _create_analyzer_id.analyzer_id.uuid = "1e22f180-ba28-4641-b190-2287bf446666"
        return _create_analyzer_id
    
    
    def create_analyzer():
        _create_analyzer                              = Analyzer()
        # _create_analyzer.analyzer_id.analyzer_id.uuid = str(uuid.uuid4())
        _create_analyzer.analyzer_id.analyzer_id.uuid = "20540c4f-6797-45e5-af70-6491b49283f9"
        _create_analyzer.algorithm_name               = "Test_Aggergate_and_Threshold"
        _create_analyzer.operation_mode               = AnalyzerOperationMode.ANALYZEROPERATIONMODE_STREAMING
        
        _kpi_id = KpiId()
        # input IDs to analyze
        _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _kpi_id.kpi_id.uuid              = "5716c369-932b-4a02-b4c7-6a2e808b92d7"
        _create_analyzer.input_kpi_ids.append(_kpi_id)
        _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _kpi_id.kpi_id.uuid              = "8f70d908-cc48-48de-8664-dc9be2de0089"
        _create_analyzer.input_kpi_ids.append(_kpi_id)
        _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _create_analyzer.input_kpi_ids.append(_kpi_id)
        # output IDs after analysis
        _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _create_analyzer.output_kpi_ids.append(_kpi_id)
        _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _create_analyzer.output_kpi_ids.append(_kpi_id)
        # parameter
        _threshold_dict = {
            # 'avg_value'   :(20, 30), 'min_value'   :(00, 10), 'max_value'   :(45, 50),
            'first_value' :(00, 10), 'last_value'  :(40, 50), 'stdev_value':(00, 10)}
        _create_analyzer.parameters['thresholds']      = json.dumps(_threshold_dict)
        _create_analyzer.parameters['window_size']     = "60 seconds"     # Such as "10 seconds", "2 minutes", "3 hours", "4 days" or "5 weeks" 
        _create_analyzer.parameters['window_slider']   = "30 seconds"     # should be less than window size
        _create_analyzer.parameters['store_aggregate'] = str(False)       # TRUE to store. No implemented yet
    
        return _create_analyzer
    
    def create_analyzer_dask():
        _create_analyzer                              = Analyzer()
        _create_analyzer.analyzer_id.analyzer_id.uuid = str(uuid.uuid4())
        # _create_analyzer.analyzer_id.analyzer_id.uuid = "1e22f180-ba28-4641-b190-2287bf446666"
        _create_analyzer.algorithm_name               = "Test_Aggergate_and_Threshold"
        _create_analyzer.operation_mode               = AnalyzerOperationMode.ANALYZEROPERATIONMODE_STREAMING
        
        _kpi_id = KpiId()
        # input IDs to analyze
        # _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _kpi_id.kpi_id.uuid              = "6e22f180-ba28-4641-b190-2287bf448888" 
        _create_analyzer.input_kpi_ids.append(_kpi_id)
        # _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _kpi_id.kpi_id.uuid              = "1e22f180-ba28-4641-b190-2287bf446666"
        _create_analyzer.input_kpi_ids.append(_kpi_id)
        # _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _create_analyzer.input_kpi_ids.append(_kpi_id)
        # output IDs after analysis
        _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _create_analyzer.output_kpi_ids.append(_kpi_id)
        _kpi_id.kpi_id.uuid              = str(uuid.uuid4())
        _create_analyzer.output_kpi_ids.append(_kpi_id)
        # parameter
    
        _threshold_dict = {
            'mean_latency'  :(20, 30),  'min_latency'   :(00, 10),  'max_latency' :(45, 50),#}
            'first_value'   :(00, 50),  'last_value'    :(50, 100), 'std_value' :(0, 90)}
        _create_analyzer.parameters['thresholds']      = json.dumps(_threshold_dict)
        _create_analyzer.parameters['oper_list']       = json.dumps([key.split('_')[0] for key in _threshold_dict.keys()])
        _create_analyzer.parameters['window_size']     = "10s"     # Such as "10 seconds", "2 minutes", "3 hours", "4 days" or "5 weeks" 
        _create_analyzer.parameters['window_slider']   = "5s"     # should be less than window size
        _create_analyzer.parameters['store_aggregate'] = str(False)       # TRUE to store. No implemented yet
        return _create_analyzer