Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
KpiValueApiServiceServicerImpl.py 7.20 KiB
# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging, grpc
from typing import Tuple, Any
from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method
from common.tools.kafka.Variables import KafkaConfig, KafkaTopic

from common.proto.context_pb2 import Empty
from common.proto.kpi_sample_types_pb2 import KpiSampleType
from common.proto.kpi_manager_pb2 import KpiDescriptor, KpiId
from common.proto.kpi_value_api_pb2_grpc import KpiValueAPIServiceServicer
from common.proto.kpi_value_api_pb2 import KpiValueList, KpiValueFilter, KpiValue, KpiValueType

from confluent_kafka import Producer as KafkaProducer

from prometheus_api_client import PrometheusConnect
from prometheus_api_client.utils import parse_datetime

from kpi_manager.client.KpiManagerClient import KpiManagerClient

LOGGER       = logging.getLogger(__name__)
METRICS_POOL = MetricsPool('KpiValueAPI', 'NBIgRPC')
PROM_URL     = "http://prometheus-k8s.monitoring.svc.cluster.local:9090"    # TODO: updated with the env variables

class KpiValueApiServiceServicerImpl(KpiValueAPIServiceServicer):
    def __init__(self):
        LOGGER.debug('Init KpiValueApiService')
    
    @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
    def StoreKpiValues(self, request: KpiValueList, grpc_context: grpc.ServicerContext
                       ) -> Empty:
        LOGGER.debug('StoreKpiValues: Received gRPC message object: {:}'.format(request))
        producer_obj = KafkaProducer({
            'bootstrap.servers' : KafkaConfig.SERVER_ADDRESS.value    
        })
        for kpi_value in request.kpi_value_list:
            kpi_value_to_produce : Tuple [str, Any, Any] = (
                kpi_value.kpi_id.kpi_id,            
                kpi_value.timestamp,                
                kpi_value.kpi_value_type            # kpi_value.kpi_value_type.(many options) how?
            )
            LOGGER.debug('KPI to produce is {:}'.format(kpi_value_to_produce))
            msg_key = "gRPC-kpivalueapi"        # str(__class__.__name__) can be used
        
            producer_obj.produce(
                KafkaTopic.VALUE.value, 
                key      = msg_key,
                value    = kpi_value.SerializeToString(),      # value = json.dumps(kpi_value_to_produce),
                callback = self.delivery_callback
            )
            producer_obj.flush()
        return Empty()

    @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
    def SelectKpiValues(self, request: KpiValueFilter, grpc_context: grpc.ServicerContext
                        ) -> KpiValueList:
        LOGGER.debug('StoreKpiValues: Received gRPC message object: {:}'.format(request))
        response = KpiValueList()
        
        kpi_manager_client = KpiManagerClient()
        prom_connect       = PrometheusConnect(url=PROM_URL)

        metrics          = [self.GetKpiSampleType(kpi, kpi_manager_client) for kpi       in request.kpi_id]
        start_timestamps = [parse_datetime(timestamp)                      for timestamp in request.start_timestamp]
        end_timestamps   = [parse_datetime(timestamp)                      for timestamp in request.end_timestamp]

        prom_response = []
        for start_time, end_time in zip(start_timestamps, end_timestamps):
            for metric in metrics:
                print(start_time, end_time, metric)
                LOGGER.debug(">>> Query: {:}".format(metric))
                prom_response.append(
                    prom_connect.custom_query_range(
                    query      = metric,        # this is the metric name and label config
                    start_time = start_time,
                    end_time   = end_time,
                    step       = 30,            # or any other step value (missing in gRPC Filter request)
                    )
                )
        
        for single_resposne in prom_response:
            # print ("{:}".format(single_resposne))
            for record in single_resposne:
                # print("Record >>> kpi: {:} >>> time & values set: {:}".format(record['metric']['__name__'], record['values']))
                for value in record['values']:
                    # print("{:} - {:}".format(record['metric']['__name__'], value))
                    kpi_value = KpiValue()
                    kpi_value.kpi_id.kpi_id  = record['metric']['__name__'],      
                    kpi_value.timestamp      = value[0],      
                    kpi_value.kpi_value_type = self.ConverValueToKpiValueType(value[1])
                    response.kpi_value_list.append(kpi_value)
        return response
    
    def GetKpiSampleType(self, kpi_value: str, kpi_manager_client):
        print("--- START -----")

        kpi_id = KpiId()
        kpi_id.kpi_id.uuid = kpi_value.kpi_id.kpi_id.uuid
        # print("KpiId generated: {:}".format(kpi_id))

        try:
            kpi_descriptor_object = KpiDescriptor()
            kpi_descriptor_object = kpi_manager_client.GetKpiDescriptor(kpi_id)
            # TODO: why kpi_descriptor_object recevies a KpiDescriptor type object not Empty type object???
            if kpi_descriptor_object.kpi_id.kpi_id.uuid == kpi_id.kpi_id.uuid:
                LOGGER.info("Extracted KpiDescriptor: {:}".format(kpi_descriptor_object))
                print("Extracted KpiDescriptor: {:}".format(kpi_descriptor_object))
                return KpiSampleType.Name(kpi_descriptor_object.kpi_sample_type)    # extract and return the name of KpiSampleType
            else:
                LOGGER.info("No KPI Descriptor found in DB for Kpi ID: {:}".format(kpi_id))
                print("No KPI Descriptor found in DB for Kpi ID: {:}".format(kpi_id))
        except Exception as e:
            LOGGER.info("Unable to get KpiDescriptor. Error: {:}".format(e))
            print ("Unable to get KpiDescriptor. Error: {:}".format(e))

    def ConverValueToKpiValueType(self, value):
        # Check if the value is an integer (int64)
        try:
            int_value = int(value)
            return KpiValueType(int64Val=int_value)
        except ValueError:
            pass
        # Check if the value is a float
        try:
            float_value = float(value)
            return KpiValueType(floatVal=float_value)
        except ValueError:
            pass
        # Check if the value is a boolean
        if value.lower() in ['true', 'false']:
            bool_value = value.lower() == 'true'
            return KpiValueType(boolVal=bool_value)
        # If none of the above, treat it as a string
        return KpiValueType(stringVal=value)

    def delivery_callback(self, err, msg):
        if err: LOGGER.debug('Message delivery failed: {:}'.format(err))
        else:   LOGGER.debug('Message delivered to topic {:}'.format(msg.topic()))