-
martinezric authored
- Added missing gitignore entries - Added log messages
martinezric authored- Added missing gitignore entries - Added log messages
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
pathComp_tools.c 119.40 KiB
/*
* Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <glib.h>
#include <sys/time.h>
#include <ctype.h>
#include <strings.h>
#include <time.h>
#include <math.h>
#include <fcntl.h>
#include <uuid/uuid.h>
#include <errno.h>
#include "pathComp_log.h"
#include "pathComp.h"
#include "pathComp_tools.h"
gint numPathCompIntents = 0; // number of events triggering the path computation
//gint numSuccesPathComp = 0; // number of events resulting in succesfully path computations fulfilling the constraints
struct timeval total_path_comp_time;
gdouble totalReqBw = 0.0;
gdouble totalServedBw = 0.0;
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function for time processing
*
* @param a
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
struct timeval tv_adjust (struct timeval a) {
while (a.tv_usec >= 1000000) {
a.tv_usec -= 1000000;
a.tv_sec++;
}
while (a.tv_usec < 0) {
a.tv_usec += 1000000;
a.tv_sec--;
}
return a;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief friendly function to copy safely strings
*
* @param dst
* @param src
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
void duplicate_string(gchar* dst, gchar* src) {
g_assert(dst); g_assert(src);
strcpy(dst, src);
dst[strlen(dst)] = '\0';
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to print the computed the path
*
* @param path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path (struct compRouteOutputItem_t *p) {
g_assert(p);
DEBUG_PC ("=========== COMPUTED PATH =======================");
DEBUG_PC ("E2E Avail. Bw: %f, Latency: %f, Cost: %f, Consumed Power (in W): %f", p->availCap, p->delay, p->cost, p->power);
for (gint k = 0; k < p->numRouteElements; k++) {
DEBUG_PC ("%s[%s] --> %s[%s]", p->routeElement[k].aNodeId.nodeId, p->routeElement[k].aEndPointId,
p->routeElement[k].zNodeId.nodeId, p->routeElement[k].zEndPointId);
DEBUG_PC("\t linkId: %s", p->routeElement[k].linkId);
DEBUG_PC("\t aTopologyId: %s", p->routeElement[k].aTopologyId);
DEBUG_PC("\t zTopologyId: %s", p->routeElement[k].zTopologyId);
}
DEBUG_PC ("==================================================================");
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to print the output path formed by link Ids
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path_t(struct path_t* p) {
g_assert(p);
DEBUG_PC(" ============ COMPUTED OUTPUT PATH =================");
DEBUG_PC("Path AvailBw: %f, Cost: %f, Latency: %f, Power: %f", p->path_capacity.value,
p->path_cost.cost_value, p->path_latency.fixed_latency, p->path_power.power);
DEBUG_PC("number of links of path %d", p->numPathLinks);
for (gint k = 0; k < p->numPathLinks; k++) {
DEBUG_PC("Link: %s", p->pathLinks[k].linkId);
for (gint l = 0; l < p->pathLinks[k].numLinkTopologies; l++) {
DEBUG_PC("end Link [%d] TopologyId: %s", l, p->pathLinks[k].linkTopologies[l].topologyId);
}
DEBUG_PC(" ContextId: %s", p->pathLinks[k].topologyId.contextId);
DEBUG_PC(" TopologyUUid: %s", p->pathLinks[k].topologyId.topology_uuid);
DEBUG_PC(" aDeviceId: %s", p->pathLinks[k].aDeviceId);
DEBUG_PC(" aEndpointId: %s", p->pathLinks[k].aEndPointId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used allocate memory for struct path_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
struct path_t* create_path() {
struct path_t* p = g_malloc0(sizeof(struct path_t));
if (p == NULL) {
DEBUG_PC("Memory allocation failure");
exit(-1);
}
return(p);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Returns the char (36 bytes) format of a uuid
*
* @param uuid
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gchar* get_uuid_char(uuid_t uuid) {
gchar* uuidChar = g_malloc0(16); // uuid has 36 chars
if (uuidChar == NULL) {
DEBUG_PC("Memory Allocation failure");
exit(-1);
}
uuid_unparse(uuid, (char *)uuidChar);
return uuidChar;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Makes a copy of the service identifier (including the context)
*
* @param o
* @param i
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_service_id(struct serviceId_t* o, struct serviceId_t* i) {
g_assert(o); g_assert(i);
memcpy(o->contextId, i->contextId, sizeof(i->contextId));
memcpy(o->service_uuid, i->service_uuid, sizeof(i->service_uuid));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Makes a copy of the service endpoint identifier (including the topology (contect and topology id), device and endpoint (port))
*
* @param oEp
* @param iEp
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_service_endpoint_id(struct service_endpoints_id_t* oEp, struct service_endpoints_id_t* iEp) {
g_assert(oEp); g_assert(iEp);
// copy topology information
memcpy(oEp->topology_id.contextId, iEp->topology_id.contextId, sizeof(iEp->topology_id.contextId));
memcpy(oEp->topology_id.topology_uuid, iEp->topology_id.topology_uuid, sizeof(iEp->topology_id.topology_uuid));
// copy the endpoint
memcpy(oEp->device_uuid, iEp->device_uuid, sizeof(iEp->device_uuid));
memcpy(oEp->endpoint_uuid, iEp->endpoint_uuid, sizeof(iEp->endpoint_uuid));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief From the set of contexts, it is returned the graph associated to that context matching
* with the passed contextId.
*
* @param Set
* @param contextId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct graph_t* get_graph_by_contextId(GList* set, gchar* contextId) {
g_assert(contextId);
// iterate over the set of context. Pick the one matching with contextId, and return the graph.
// If not found, return NULL
struct graph_t* g = NULL;
for (GList *ln = g_list_first(set);
ln;
ln = g_list_next(ln)){
struct context_t* context = (struct context_t*)(ln->data);
if (strcmp(context->contextId, contextId) == 0) {
g = &(context->g);
return g;
}
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Process the service constraint and maps them into the path constraints
* to be fulfilled
*
* @param path_constraints
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct path_constraints_t * get_path_constraints(struct service_t* s) {
g_assert(s);
struct path_constraints_t* path_constraints = g_malloc0(sizeof(struct path_constraints_t));
if (path_constraints == NULL) {
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
char* eptr;
for (gint i = 0; i < s->num_service_constraints; i++) {
struct constraint_t* constraint = &(s->constraints[i]);;
if (strncmp((const char*)constraint->constraint_type, "bandwidth", 9) == 0) {
path_constraints->bwConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->bw = TRUE;
//DEBUG_PC("Path Constraint Bw: %f", path_constraints->bwConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "cost", 4) == 0) {
path_constraints->costConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->cost = TRUE;
//DEBUG_PC("Path Constraint Cost: %f", path_constraints->costConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "latency", 7) == 0) {
path_constraints->latencyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->latency = TRUE;
//DEBUG_PC("Path Constraint Latency: %f", path_constraints->latencyConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "energy", 6) == 0) {
path_constraints->energyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->energy = TRUE;
//DEBUG_PC("Path Constraint Energy: %f", path_constraints->energyConstraint);
}
}
return path_constraints;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Creates the predecessors to keep the computed path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct pred_t * create_predecessors () {
struct pred_t *predecessors = g_malloc0 (sizeof (struct pred_t));
if (predecessors == NULL) {
DEBUG_PC ("memory allocation failed\n");
exit (-1);
}
return predecessors;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief create edge
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* create_edge() {
struct edges_t* e = g_malloc0(sizeof(struct edges_t));
if (e == NULL) {
DEBUG_PC("Memory allocation failed\n");
exit(-1);
}
return e;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Prints the list of the predecessors for a given computed Shortest Path
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_predecessors (struct pred_t *p)
{
g_assert (p);
DEBUG_PC ("Number of Predecessors: %d", p->numPredComp);
for (gint i = 0; i < p->numPredComp; i++) {
struct pred_comp_t *pComp = &(p->predComp[i]);
DEBUG_PC ("deviceId: %s", pComp->v.nodeId);
struct edges_t *e = &(pComp->e);
DEBUG_PC("Edge[#%d] (linkId): %s", i, e->linkId);
DEBUG_PC ("\t %s[%s] ===>", e->aNodeId.nodeId, e->aEndPointId);
DEBUG_PC("\t %s[%s]", e->zNodeId.nodeId, e->zEndPointId);
DEBUG_PC("\t aTopologyId: %s", e->aTopologyId);
DEBUG_PC("\t zTopologyId: %s", e->zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Builds the list of predecessors for the request destination using the computed Shortest Path
* being stored in map
*
* @param p
* @param s
* @param map
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_predecessors (struct pred_t *p, struct service_t *s, struct map_nodes_t *map) {
g_assert (p); g_assert (s); g_assert (map);
struct nodes_t *v = create_node();
duplicate_string(v->nodeId, s->service_endpoints_id[1].device_uuid);
struct edges_t *e = create_edge();
get_edge_from_map_by_node (e, v, map);
// Get u (being source of edge e)
struct nodes_t u;
duplicate_node_id (&e->aNodeId, &u);
// Add to the predecessors list
struct pred_comp_t *pred = &(p->predComp[p->numPredComp]);
duplicate_node_id (&u, &pred->v);
struct edges_t *e1 = &(pred->e);
duplicate_edge (e1, e);
p->numPredComp++;
// Back-trace edges till reaching the srcPEId
struct nodes_t* srcNode = create_node();
duplicate_string(srcNode->nodeId, s->service_endpoints_id[0].device_uuid);
while (compare_node_id (&u, srcNode) != 0) {
duplicate_node_id (&u, v);
get_edge_from_map_by_node (e, v, map);
// Get the u (being source of edge e)
duplicate_node_id (&e->aNodeId, &u);
// Get the new predecessor
struct pred_comp_t *pred = &p->predComp[p->numPredComp];
// Add to the predecessors list
duplicate_node_id (&u, &pred->v);
struct edges_t *e1 = &(pred->e);
duplicate_edge (e1, e);
p->numPredComp++;
}
print_predecessors (p);
g_free (e); g_free(v); g_free(srcNode);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief It creates a struct nodes_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct nodes_t * create_node ()
{
struct nodes_t *n = g_malloc0 (sizeof (struct nodes_t));
if (n == NULL) {
DEBUG_PC ("memory allocation problem");
exit (-1);
}
return n;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief It creates a routeElement_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct routeElement_t * create_routeElement () {
struct routeElement_t *rE = g_malloc0 (sizeof (struct routeElement_t));
if (rE == NULL) {
DEBUG_PC ("memory allocation problem");
exit (-1);
}
return rE;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief copy node ids
*
* @param src
* @param dst
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_node_id (struct nodes_t *src, struct nodes_t *dst) {
g_assert (src);
g_assert (dst);
//DEBUG_PC ("Duplicate nodeId for %s", src->nodeId);
strcpy (dst->nodeId, src->nodeId);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief compares a pair of node Ids
*
* @param a
* @param b
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint compare_node_id (struct nodes_t *a, struct nodes_t *b) {
g_assert (a);
g_assert (b);
return (memcmp (&a->nodeId, b->nodeId, strlen (b->nodeId)));
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief duplicate two routeElement_t
*
* @param src
* @param dst
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_routeElement (struct routeElement_t *src, struct routeElement_t *dst)
{
g_assert (src);
g_assert (dst);
duplicate_node_id (&(src->aNodeId), &(dst->aNodeId));
duplicate_node_id (&(src->zNodeId), &(dst->zNodeId));
duplicate_string(dst->aEndPointId, src->aEndPointId);
duplicate_string(dst->zEndPointId, src->zEndPointId);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief duplicate two edges
*
* @param e1 (destination)
* @param e2 (source)
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_edge (struct edges_t *e1, struct edges_t *e2) {
g_assert (e1); g_assert (e2);
duplicate_node_id (&e2->aNodeId, &e1->aNodeId);
duplicate_node_id (&e2->zNodeId, &e1->zNodeId);
//DEBUG_PC ("e->aNodeId: %s ---> e->zNodeId: %s", e1->aNodeId.nodeId, e1->zNodeId.nodeId);
duplicate_string(e1->aEndPointId, e2->aEndPointId);
duplicate_string(e1->zEndPointId, e2->zEndPointId);
duplicate_string(e1->linkId, e2->linkId);
duplicate_string(e1->interDomain_localId, e2->interDomain_localId);
duplicate_string(e1->interDomain_remoteId, e2->interDomain_remoteId);
duplicate_string(e1->aTopologyId, e2->aTopologyId);
duplicate_string(e1->zTopologyId, e2->zTopologyId);
e1->unit = e2->unit;
memcpy(&e1->totalCap, &e2->totalCap, sizeof(gdouble));
memcpy(&e1->availCap, &e2->availCap, sizeof(gdouble));
memcpy (&e1->cost, &e2->cost, sizeof (gdouble));
memcpy (&e1->delay, &e2->delay, sizeof (gdouble));
memcpy(&e1->energy, &e2->energy, sizeof(gdouble));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate path
*
* @param a - original
* @param b - copy
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path (struct compRouteOutputItem_t *a, struct compRouteOutputItem_t *b) {
g_assert (a); g_assert (b);
memcpy(&b->availCap, &a->availCap, sizeof (gdouble));
memcpy(&b->cost, &a->cost, sizeof(gdouble));
memcpy(&b->delay, &a->delay, sizeof (gdouble));
memcpy(&b->power, &a->power, sizeof(gdouble));
b->numRouteElements = a->numRouteElements;
for (gint k = 0; k < a->numRouteElements; k++) {
//DEBUG_PC ("aNodeId: %s // zNodeId: %s", a->routeElement[k].aNodeId.nodeId, a->routeElement[k].zNodeId.nodeId);
// aNodeId duplication
struct nodes_t *n1 = &(a->routeElement[k].aNodeId);
struct nodes_t *n2 = &(b->routeElement[k].aNodeId);
duplicate_node_id (n1, n2);
//zNodeId duplication
n1 = &(a->routeElement[k].zNodeId);
n2 = &(b->routeElement[k].zNodeId);
duplicate_node_id (n1, n2);
duplicate_string(b->routeElement[k].aEndPointId, a->routeElement[k].aEndPointId);
duplicate_string(b->routeElement[k].zEndPointId, a->routeElement[k].zEndPointId);
duplicate_string(b->routeElement[k].linkId, a->routeElement[k].linkId);
duplicate_string(b->routeElement[k].aTopologyId, a->routeElement[k].aTopologyId);
duplicate_string(b->routeElement[k].zTopologyId, a->routeElement[k].zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate path from compRouteOutputItem_t to path_t
*
* @param a - original
* @param b - copy
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path_t(struct compRouteOutputItem_t* a, struct path_t* b) {
g_assert(a); g_assert(b);
// transfer path characteristics ...
memcpy(&b->path_capacity.value, &a->availCap, sizeof(gdouble));
memcpy(&b->path_cost.cost_value, &a->cost, sizeof(gdouble));
memcpy(&b->path_latency.fixed_latency, &a->delay, sizeof(gdouble));
memcpy(&b->path_power.power, &a->power, sizeof(gdouble));
b->numPathLinks = a->numRouteElements;
for (gint k = 0; k < a->numRouteElements; k++) {
struct routeElement_t* rE = &(a->routeElement[k]);
struct pathLink_t* pL = &(b->pathLinks[k]);
// copy the aDeviceId and aEndpointId, zDeviceId and zEndPointId
duplicate_string(pL->aDeviceId, rE->aNodeId.nodeId);
duplicate_string(pL->zDeviceId, rE->zNodeId.nodeId);
duplicate_string(pL->aEndPointId, rE->aEndPointId);
duplicate_string(pL->zEndPointId, rE->zEndPointId);
duplicate_string(pL->topologyId.topology_uuid, rE->aTopologyId);
duplicate_string(pL->topologyId.contextId, rE->contextId);
//copy the linkId
duplicate_string(pL->linkId, rE->linkId);
pL->numLinkTopologies++;
duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->aTopologyId);
pL->numLinkTopologies++;
duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Return the index into mapN related nodeId
*
* @param nodeId
* @para mapN
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint get_map_index_by_nodeId (gchar *nodeId, struct map_nodes_t * mapN) {
gint i = 0;
for (i = 0; i < mapN->numMapNodes; i++) {
//DEBUG_PC ("i: %d; current: %s // targeted: %s", i, mapN->map[i].verticeId.nodeId, nodeId);
if (memcmp (mapN->map[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0) {
//DEBUG_PC ("Index: %d", i);
return i;
}
}
//DEBUG_PC ("Index: %d", index);
return -1;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Get the edge e enabling reaching the computed v in mapNodes
*
* @param e
* @param v
* @param mapN
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_map_by_node (struct edges_t *e, struct nodes_t* v, struct map_nodes_t *mapN) {
//DEBUG_PC ("Get the Edge into map from node v: %s", v.nodeId);
// Get the edge reaching the node v from mapNodes
gint map_vIndex = get_map_index_by_nodeId (v->nodeId, mapN);
//DEBUG_PC ("aNodeId: %s --> zNodeId: %s", mapN->map[map_vIndex].predecessor.aNodeId.nodeId, mapN->map[map_vIndex].predecessor.zNodeId.nodeId);
struct edges_t *te = &(mapN->map[map_vIndex].predecessor);
duplicate_edge (e, te);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Get the edge from the predecessors array for a given node n
*
* @param e
* @param n
* @param predecessors
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_predecessors (struct edges_t *e, struct nodes_t* n, struct pred_t *predecessors) {
g_assert(predecessors);
DEBUG_PC ("Get edge outgoing node %s from predecessors list", n->nodeId);
//print_predecessors (predecessors);
for (gint i = 0; i < predecessors->numPredComp; i++) {
struct pred_comp_t *pred = &(predecessors->predComp[i]);
if (compare_node_id (n, &pred->v) == 0) {
// Add to the predecessors list
struct edges_t *te = &(pred->e);
DEBUG_PC("add e (linkId): %s", te->linkId);
duplicate_edge (e, te);
return;
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Construct the path using the predecessors list
*
* @param path
* @param predecessors
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_path (struct compRouteOutputItem_t *p, struct pred_t *predecessors, struct service_t *s) {
// Get the source device Id of the network connectivity service
struct nodes_t *v = create_node();
// Src Node of the Service set to v
duplicate_string(v->nodeId, s->service_endpoints_id[0].device_uuid);
// Get the edge for v in predecessors
struct edges_t* e = create_edge();
get_edge_from_predecessors (e, v, predecessors);
// Get the target for e
struct nodes_t u;
duplicate_node_id (&e->zNodeId, &u);
//DEBUG_PC ("u: %s", u.nodeId);
struct path_constraints_t* pathCons = get_path_constraints(s);
// Add route element to the path being constructed
gint k = 0;
duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
duplicate_string(p->routeElement[k].linkId, e->linkId);
duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);
p->numRouteElements++;
// Get Dst Node of connectivity service
struct nodes_t* dst = create_node();
duplicate_string(dst->nodeId, s->service_endpoints_id[1].device_uuid);
while (compare_node_id (&u, dst) != 0) {
k++;
p->numRouteElements++;
duplicate_node_id (&u, v);
get_edge_from_predecessors (e, v, predecessors);
// Get the target u
duplicate_node_id (&e->zNodeId, &u);
// Add route element to the path being constructed
duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
duplicate_string(p->routeElement[k].linkId, e->linkId);
duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);
}
g_free(e); g_free(v); g_free(pathCons);
//DEBUG_PC ("Path is constructed");
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Print the graph for DEBUG_PCging purposes
*
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_graph (struct graph_t *g) {
g_assert(g);
DEBUG_PC ("================================================================");
DEBUG_PC ("=========================== GRAPH ==========================");
DEBUG_PC ("================================================================");
DEBUG_PC("Graph Num Vertices: %d", g->numVertices);
for (gint i = 0; i < g->numVertices; i++) {
DEBUG_PC ("Head Vertice [%s]", g->vertices[i].verticeId.nodeId);
for (gint j = 0; j < g->vertices[i].numTargetedVertices; j++)
{
DEBUG_PC (" Tail Vertice: %s", g->vertices[i].targetedVertices[j].tVertice.nodeId);
for (gint k = 0; k < g->vertices[i].targetedVertices[j].numEdges; k++)
{
struct edges_t *e = &(g->vertices[i].targetedVertices[j].edges[k]);
DEBUG_PC ("%s(%s) --> %s(%s) [C: %f, Bw: %f b/s, Delay: %f ms]", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId,
e->zEndPointId, e->cost, e->availCap, e->delay);
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look for a given edge into the graph
*
* @param verticeIndex
* @param targetedVerticeIndex
* @param e
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_edge_lookup (gint verticeIndex, gint targetedVerticeIndex, struct edges_t *e, struct graph_t *g) {
gint indexEdge = -1;
for (gint j = 0; j < g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].numEdges; j++) {
struct edges_t *e2 = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].edges[j]);
if ((compare_node_id (&e->aNodeId, &e2->aNodeId) == 0) &&
(compare_node_id (&e->zNodeId, &e2->zNodeId) == 0) &&
(strcmp (e->aEndPointId, e2->aEndPointId) == 0) &&
(strcmp (e->zEndPointId, e2->zEndPointId) == 0) &&
(strcmp(e->linkId, e2->linkId) == 0)) {
DEBUG_PC ("%s (%s) --> %s (%s) [linkId: %s] FOUND in the Graph at index: %d", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId,
e->zEndPointId, e->linkId, j);
indexEdge = j;
return indexEdge;
}
}
return indexEdge;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look for a given vertice within the graph using the nodeId
*
* @param nodeId
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_vertice_lookup (gchar *nodeId, struct graph_t *g)
{
gint index = -1;
//DEBUG_PC("Searching Node: %s", nodeId);
for (gint i = 0; i < g->numVertices; i++) {
//DEBUG_PC("Checked Graph Node: %s", g->vertices[i].verticeId.nodeId);
if (memcmp (g->vertices[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0)
{
index = i;
//DEBUG_PC ("%s is found in the graph vertice [%d]", nodeId, index);
break;
}
}
return (index);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice
*
* @param nodeId
* @param vIndex
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_lookup (gint vIndex, gchar *nodeId, struct graph_t *g)
{
gint addedTargetedVerticeIndex = -1;
gint i = 0;
if (g->vertices[vIndex].numTargetedVertices == 0)
{
return (addedTargetedVerticeIndex);
}
for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
{
if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
{
DEBUG_PC ("Targeted %s reachable from %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = i;
return (addedTargetedVerticeIndex);
}
}
// not found ...
return (addedTargetedVerticeIndex);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice, if not to be added
*
* @param nodeId
* @param vIndex
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_add (gint vIndex, gchar *nodeId, struct graph_t *g)
{
gint addedTargetedVerticeIndex = -1;
gint i = 0;
if (g->vertices[vIndex].numTargetedVertices == 0)
{
//DEBUG_PC ("targeted vertice %s being reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = 0;
return (addedTargetedVerticeIndex);
}
for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
{
if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
{
//DEBUG_PC ("Targeted vertice %s is already considered in the reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = -1;
return (addedTargetedVerticeIndex);
}
}
// It is not found, next to be added at i position
addedTargetedVerticeIndex = i;
return (addedTargetedVerticeIndex);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove edge from the graph
*
* @param g
* @param e
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
void remove_edge_from_graph (struct graph_t *g, struct edges_t *e) {
// Find the ingress vertice into the graph
DEBUG_PC ("Removing from Graph %s[%s]) ---> %s[%s] (linkId: %s)", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, e->aEndPointId, e->linkId);
gint verticeIndex = -1;
verticeIndex = graph_vertice_lookup (e->aNodeId.nodeId, g);
if (verticeIndex == -1) {
DEBUG_PC ("Edge w/ %s is NOT in the Graph!!", e->aNodeId.nodeId);
return;
}
// Find the targeted vertice from vertice Id
gint targetedVerticeIndex = -1;
targetedVerticeIndex = graph_targeted_vertice_lookup (verticeIndex, e->zNodeId.nodeId, g);
if (targetedVerticeIndex == -1) {
DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
return;
}
//DEBUG_PC ("%s --> %s found in the Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);
// Get the edge position
gint edgeIndex = -1;
edgeIndex = graph_edge_lookup (verticeIndex, targetedVerticeIndex, e, g);
if (edgeIndex == -1) {
DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
return;
}
//DEBUG_PC ("%s --> %s FOUND in Graph w/ edgeIndex: %d", e->aNodeId.nodeId, e->zNodeId.nodeId, edgeIndex);
// Remove the edge
//DEBUG_PC ("Start Removing %s --> %s from Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);
struct targetNodes_t *v = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex]);
for (gint j = edgeIndex; j < v->numEdges; j++) {
struct edges_t *e1 = &(v->edges[j]);
struct edges_t *e2 = &(v->edges[j+1]);
duplicate_edge (e1, e2);
}
v->numEdges --;
DEBUG_PC ("Number of Edges between %s and %s is %d", e->aNodeId.nodeId, e->zNodeId.nodeId, v->numEdges);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief create the pointer for keeping a set of the paths (struct compRouteOutput_t)
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct path_set_t * create_path_set () {
struct path_set_t * p = g_malloc0 (sizeof (struct path_set_t));
if (p == NULL) {
DEBUG_PC ("Memory allocation problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove the path set
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2021
*/
/////////////////////////////////////////////////////////////////////////////////////////
void remove_path_set(struct path_set_t* p) {
g_assert(p); g_free(p);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Create map of nodes to handle the path computation
*
* @param mapN
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_map_node (struct map_nodes_t *mapN, struct graph_t *g) {
//DEBUG_PC ("Construction of the Map of Nodes");
for (gint i = 0; i < g->numVertices; i++) {
duplicate_node_id (&g->vertices[i].verticeId, &mapN->map[i].verticeId);
mapN->map[i].distance = INFINITY_COST;
mapN->map[i].avaiBandwidth = 0.0;
mapN->map[i].latency = INFINITY_COST;
mapN->map[i].power = INFINITY_COST;
mapN->numMapNodes++;
}
//DEBUG_PC ("mapNodes formed by %d Nodes", mapN->numMapNodes);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for path of struct compRouteOutputList_t *
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputList_t * create_route_list () {
struct compRouteOutputList_t *p = g_malloc0 (sizeof (struct compRouteOutputList_t));
if (p == NULL) {
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Copy all the attributes defining a path
*
* @param dst_path
* @param src_path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_path(struct path_t* dst_path, struct path_t* src_path) {
g_assert(dst_path);
g_assert(src_path);
// Path capacity
dst_path->path_capacity.unit = src_path->path_capacity.unit;
memcpy(&dst_path->path_capacity.value, &src_path->path_capacity.value, sizeof(gdouble));
// Path latency
memcpy(&dst_path->path_latency.fixed_latency, &src_path->path_latency.fixed_latency, sizeof(gdouble));
// Path cost
duplicate_string(dst_path->path_cost.cost_name, src_path->path_cost.cost_name);
memcpy(&dst_path->path_cost.cost_value, &src_path->path_cost.cost_value, sizeof(gdouble));
memcpy(&dst_path->path_cost.cost_algorithm, &src_path->path_cost.cost_algorithm, sizeof(gdouble));
// Path links
dst_path->numPathLinks = src_path->numPathLinks;
for (gint i = 0; i < dst_path->numPathLinks; i++) {
struct pathLink_t* dPathLink = &(dst_path->pathLinks[i]);
struct pathLink_t* sPathLink = &(src_path->pathLinks[i]);
duplicate_string(dPathLink->linkId, sPathLink->linkId);
duplicate_string(dPathLink->aDeviceId, sPathLink->aDeviceId);
duplicate_string(dPathLink->zDeviceId, sPathLink->zDeviceId);
duplicate_string(dPathLink->aEndPointId, sPathLink->aEndPointId);
duplicate_string(dPathLink->zEndPointId, sPathLink->zEndPointId);
duplicate_string(dPathLink->topologyId.contextId, sPathLink->topologyId.contextId);
duplicate_string(dPathLink->topologyId.topology_uuid, sPathLink->topologyId.topology_uuid);
dPathLink->numLinkTopologies = sPathLink->numLinkTopologies;
for (gint j = 0; j < dPathLink->numLinkTopologies; j++) {
struct linkTopology_t* dLinkTop = &(dPathLink->linkTopologies[j]);
struct linkTopology_t* sLinkTop = &(sPathLink->linkTopologies[j]);
duplicate_string(dLinkTop->topologyId, sLinkTop->topologyId);
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate the route output instance
*
* @param dst_ro
* @param src_ro
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_compRouteOuput(struct compRouteOutput_t* dst_ro, struct compRouteOutput_t* src_ro) {
g_assert(dst_ro); g_assert(src_ro);
// Copy the serviceId
copy_service_id(&dst_ro->serviceId, &src_ro->serviceId);
dst_ro->num_service_endpoints_id = src_ro->num_service_endpoints_id;
for (gint j = 0; j < dst_ro->num_service_endpoints_id; j++) {
struct service_endpoints_id_t* iEp = &(src_ro->service_endpoints_id[j]);
struct service_endpoints_id_t* oEp = &(dst_ro->service_endpoints_id[j]);
copy_service_endpoint_id(oEp, iEp);
}
// Copy paths
dst_ro->numPaths = src_ro->numPaths;
for (gint j = 0; j < dst_ro->numPaths; j++) {
struct path_t* dst_path = &(dst_ro->paths[j]);
struct path_t* src_path = &(src_ro->paths[j]);
copy_path(dst_path, src_path);
}
// copy no path issue value
dst_ro->noPathIssue = src_ro->noPathIssue;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate the computation route output list
*
* @param dst
* @param src
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_route_list(struct compRouteOutputList_t* dst, struct compRouteOutputList_t* src) {
g_assert(src); g_assert(dst);
dst->numCompRouteConnList = src->numCompRouteConnList;
dst->compRouteOK = src->compRouteOK;
memcpy(&dst->compRouteConnAvBandwidth, &src->compRouteConnAvBandwidth, sizeof(gdouble));
memcpy(&dst->compRouteConnAvPathLength, &src->compRouteConnAvPathLength, sizeof(gdouble));
for (gint i = 0; i < src->numCompRouteConnList; i++) {
struct compRouteOutput_t* src_ro = &(src->compRouteConnection[i]);
struct compRouteOutput_t* dst_ro = &(dst->compRouteConnection[i]);
duplicate_compRouteOuput(dst_ro, src_ro);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for path of struct compRouteOutputItem_t *
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputItem_t *create_path_item () {
struct compRouteOutputItem_t *p = g_malloc0 (sizeof (struct compRouteOutputItem_t));
if (p == NULL) {
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sort the set of paths the AvailBw, Cost and Delay
*
* @params setP
* @params args
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void sort_path_set(struct path_set_t* setP, guint args) {
g_assert(setP);
// Sort the paths contained in setP by:
// 1st Criteria: The path cost (maybe bound to link distance)
// 2nd Criteria: The consumed path power
// 3nd Criteria: The path latency
// 3rd Criteria: The available Bw
float epsilon = 0.1;
for (gint i = 0; i < setP->numPaths; i++) {
for (gint j = 0; j < (setP->numPaths - i - 1); j++) {
struct compRouteOutputItem_t* path1 = &setP->paths[j];
struct compRouteOutputItem_t* path2 = &setP->paths[j + 1];
struct compRouteOutputItem_t* pathTmp = create_path_item();
//////////////////////// Criterias ////////////////////////////////////////
// 1st Criteria (Cost)
if (path2->cost < path1->cost) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
if (path2->cost == path1->cost) {
// 2nd Criteria (Energy)
if (args & ENERGY_EFFICIENT_ARGUMENT) {
if (path2->power < path1->power) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else { // path1->power < path2->power
g_free(pathTmp);
continue;
}
}
else { // No enery efficient argument
// 3rd Criteria (latency)
if (path2->delay < path1->delay) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else if (path1->delay < path2->delay) {
g_free(pathTmp);
continue;
}
else { // path1->delay == path2->delay
// 4th Criteria (available bw)
if (path2->availCap > path1->availCap) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else {
g_free(pathTmp);
continue;
}
}
}
}
else { // path1->cost < path2->cost
g_free(pathTmp);
continue;
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove first element from the path sets
*
* @params setP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void pop_front_path_set (struct path_set_t *setP) {
for (gint j = 0; j < setP->numPaths - 1; j++) {
struct compRouteOutputItem_t *path1 = &setP->paths[j];
struct compRouteOutputItem_t *path2 = &setP->paths[j+1];
duplicate_path (path2, path1);
}
setP->numPaths--;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add routeElement to the back of the path
*
* @param rE
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void add_routeElement_path_back (struct routeElement_t *rE, struct compRouteOutputItem_t *p) {
//DEBUG_PC ("p->numRouteElements: %d", p->numRouteElements);
p->numRouteElements++;
gint index = p->numRouteElements - 1;
struct nodes_t *pn = &(p->routeElement[index].aNodeId);
struct nodes_t *rEn = &(rE->aNodeId);
// duplicate aNodeId
duplicate_node_id (rEn, pn);
pn = &(p->routeElement[index].zNodeId);
rEn = &(rE->zNodeId);
duplicate_node_id (rEn, pn);
duplicate_string(p->routeElement[index].aEndPointId, rE->aEndPointId);
duplicate_string(p->routeElement[index].zEndPointId, rE->zEndPointId);
duplicate_string(p->routeElement[index].linkId, rE->linkId);
duplicate_string(p->routeElement[index].aTopologyId, rE->aTopologyId);
duplicate_string(p->routeElement[index].zTopologyId, rE->zTopologyId);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief This function compares ap and rootPath. If all the links are equal between both ap and rootPath till the sN, then the link from sN to next node
* ap is returned
*
* @params ap
* @params p
* @params sN
* @params e
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gboolean matching_path_rootPath (struct compRouteOutputItem_t *ap, struct compRouteOutputItem_t *rootPath, struct nodes_t *sN, struct edges_t *e) {
gint j = 0;
gboolean ret = FALSE;
while ((j < ap->numRouteElements) && (j < rootPath->numRouteElements)) {
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) &&
//(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0) &&
(memcmp (sN->nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0)) {
duplicate_node_id (&ap->routeElement[j].aNodeId, &e->aNodeId);
duplicate_node_id (&ap->routeElement[j].zNodeId, &e->zNodeId);
duplicate_string(e->aEndPointId, ap->routeElement[j].aEndPointId);
duplicate_string(e->zEndPointId, ap->routeElement[j].zEndPointId);
duplicate_string(e->linkId, ap->routeElement[j].linkId);
return TRUE;
}
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) &&
(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) == 0)) {
j++;
continue;
}
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) != 0) ||
(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0)) {
//DEBUG_PC ("ap and rootPath not in the same path");
return ret;
}
}
return ret;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief This function is used to modify the graph to be used for running the subsequent SP computations acording to the YEN algorithm principles
*
* @params g
* @params A
* @params rootPath
* @params spurNode
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void modify_targeted_graph (struct graph_t *g, struct path_set_t *A, struct compRouteOutputItem_t * rootPath, struct nodes_t * spurNode) {
//DEBUG_PC ("Modify the Targeted graph according to the Yen algorithm principles");
for (gint j = 0; j < A->numPaths; j++) {
struct compRouteOutputItem_t *ap = &A->paths[j];
struct edges_t *e = create_edge();
gboolean ret = FALSE;
ret = matching_path_rootPath (ap, rootPath, spurNode, e);
if (ret == TRUE) {
DEBUG_PC ("Removal %s[%s] --> %s[%s] from the graph", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, e->aEndPointId);
remove_edge_from_graph (g, e);
//DEBUG_PC ("Print Resulting Graph");
print_graph (g);
g_free (e);
}
if (ret == FALSE) {
g_free (e);
continue;
}
}
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Supporting fucntion to Check if a nodeId is already in the items of a given GList
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint find_nodeId (gconstpointer data, gconstpointer userdata) {
/** check values */
g_assert(data != NULL);
g_assert(userdata != NULL);
struct nodeItem_t *SNodeId = (struct nodeItem_t *)data;
guchar * nodeId = (guchar *)userdata;
//DEBUG_PC ("SNodeId (%s) nodeId (%s)", SNodeId->node.nodeId, nodeId);
if (!memcmp(SNodeId->node.nodeId, nodeId, strlen (SNodeId->node.nodeId))) {
return (0);
}
return -1;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Explores the link between u and v
*
* @param u
* @param v
* @param g
* @param s
* @param S
* @param Q
* @param mapNodes
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint check_link (struct nodeItem_t *u, gint indexGraphU, gint indexGraphV, struct graph_t *g,
struct service_t *s, GList **S, GList **Q, struct map_nodes_t *mapNodes,
guint arg) {
g_assert(g); g_assert(s); g_assert(mapNodes);
struct targetNodes_t *v = &(g->vertices[indexGraphU].targetedVertices[indexGraphV]);
DEBUG_PC("=======================CHECK Edge %s => %s =================================", u->node.nodeId, v->tVertice.nodeId);
//DEBUG_PC("\t %s => %s", u->node.nodeId, v->tVertice.nodeId);
// v already explored in S? then, discard it
GList *found = g_list_find_custom (*S, v->tVertice.nodeId, find_nodeId);
if (found != NULL) {
DEBUG_PC ("%s in S, DISCARD", v->tVertice.nodeId);
return 0;
}
// Get the set of constraints imposed by the service
struct path_constraints_t* path_constraints = get_path_constraints(s);
gdouble distance_through_u = INFINITY_COST ,latency_through_u = INFINITY_COST, power_through_u = INFINITY_COST;
gint i = 0, foundAvailBw = 0;
// BANDWIDTH requirement to be fulfilled on EDGE u->v
gdouble edgeAvailBw = 0.0, edgeTotalBw = 0.0;
for (i = 0; i < v->numEdges; i++) {
struct edges_t *e = &(v->edges[i]);
memcpy (&edgeAvailBw, &(e->availCap), sizeof (gdouble));
memcpy(&edgeTotalBw, &(e->totalCap), sizeof(gdouble));
DEBUG_PC("EDGE %s[%s] => %s[%s]", u->node.nodeId, e->aEndPointId, v->tVertice.nodeId, e->zEndPointId);
//DEBUG_PC ("\t %s[%s] =>", u->node.nodeId, e->aEndPointId);
//DEBUG_PC("\t => %s[%s]", v->tVertice.nodeId, e->zEndPointId);
DEBUG_PC("\t Edge Att: AvailBw: %f, TotalBw: %f", edgeAvailBw, edgeTotalBw);
// Check Service Bw constraint
if ((path_constraints->bw == TRUE) && (edgeAvailBw < path_constraints->bwConstraint)) {
continue;
}
else {
foundAvailBw = 1;
break;
}
}
// BW constraint NOT MET, then DISCARD edge
if ((path_constraints->bw == TRUE) && (foundAvailBw == 0)) {
DEBUG_PC ("Edge AvailBw: %f < path_constraint: %f -- DISCARD Edge", edgeAvailBw, path_constraints->bwConstraint);
g_free(path_constraints);
return 0;
}
gint indexEdge = i; // get the index for the explored edge
// Update distance, latency and availBw through u to reach v
gint map_uIndex = get_map_index_by_nodeId (u->node.nodeId, mapNodes);
struct map_t *u_map = &mapNodes->map[map_uIndex];
distance_through_u = u_map->distance + v->edges[indexEdge].cost;
latency_through_u = u_map->latency + v->edges[indexEdge].delay;
// Consumed power at v through u is the sum
// 1. Power from src to u
// 2. Power-idle at node u
// 3. power consumed over the edge between u and v, i.e. energy*usedBw
power_through_u = u_map->power + g->vertices[indexGraphU].power_idle + ((edgeTotalBw - edgeAvailBw + path_constraints->bwConstraint) * (v->edges[indexEdge].energy));
gdouble availBw_through_u = 0.0;
// ingress endpoint (u) is the src of the request
if (strcmp (u->node.nodeId, s->service_endpoints_id[0].device_uuid) == 0) {
//DEBUG_PC ("AvailBw %f on %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);
memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));
}
else {
// Get the minimum available bandwidth between the src-->u and the new added edge u-->v
//DEBUG_PC ("Current AvailBw: %f from src to %s", u_map->avaiBandwidth, u->node.nodeId);
//DEBUG_PC ("AvailBw: %f %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);
if (u_map->avaiBandwidth <= edgeAvailBw) {
memcpy (&availBw_through_u, &u_map->avaiBandwidth, sizeof (gdouble));
}
else {
memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));
}
}
// Relax the link according to the pathCost, latency, and energy
gint map_vIndex = get_map_index_by_nodeId (v->tVertice.nodeId, mapNodes);
struct map_t *v_map = &mapNodes->map[map_vIndex];
// If cost dist (u, v) > dist (src, v) relax the link
if (distance_through_u > v_map->distance) {
//DEBUG_PC ("dist(src, u) + dist(u, v): %f > dist (src, v): %f --> Discard Link", distance_through_u, v_map->distance);
return 0;
}
// If energy consumption optimization is requested
if (arg & ENERGY_EFFICIENT_ARGUMENT) {
if (distance_through_u == v_map->distance) {
if (power_through_u > v_map->power) {
DEBUG_PC("Energy (src -> u + u -> v: %f (Watts) > Energy (src, v): %f (Watts) --> DISCARD EDGE", power_through_u, v_map->power);
return 0;
}
// same energy consumption, consider latency
if ((power_through_u == v_map->power) && (latency_through_u > v_map->latency)) {
return 0;
}
// same energy, same latency, criteria: choose the one having the largest available bw
if ((power_through_u == v_map->power) && (latency_through_u == v_map->latency) && (availBw_through_u < v_map->avaiBandwidth)) {
return 0;
}
}
} // No optimization, rely on latency and available e2e bandwidth
else {
// If dist (src, u) + dist (u, v) = current dist(src, v), then use the latency as discarding criteria
if ((distance_through_u == v_map->distance) && (latency_through_u > v_map->latency)) {
//DEBUG_PC ("dist(src, u) + dist(u,v) = current dist(src, v), but latency (src,u) + latency (u, v) > current latency (src, v)");
return 0;
}
// If dist (src, u) + dist (u,v) == current dist(src, v) AND latency (src, u) + latency (u, v) == current latency (src, v), the available bandwidth is the criteria
if ((distance_through_u == v_map->distance) && (latency_through_u == v_map->latency) && (availBw_through_u < v_map->avaiBandwidth)) {
return 0;
}
}
DEBUG_PC ("Edge %s --> %s [RELAXED]", u->node.nodeId, v->tVertice.nodeId);
DEBUG_PC ("\t path till %s: AvailBw: %f Mb/s | Cost: %f | Latency: %f ms | Energy: %f Watts", v->tVertice.nodeId, availBw_through_u, distance_through_u,
latency_through_u, power_through_u);
// Update Q list --
struct nodeItem_t *nodeItem = g_malloc0 (sizeof (struct nodeItem_t));
if (nodeItem == NULL) {
DEBUG_PC ("memory allocation failed\n");
exit (-1);
}
nodeItem->distance = distance_through_u;
memcpy(&nodeItem->distance, &distance_through_u, sizeof(gdouble));
memcpy(&nodeItem->latency, &latency_through_u, sizeof(gdouble));
memcpy(&nodeItem->power, &power_through_u, sizeof(gdouble));
duplicate_node_id (&v->tVertice, &nodeItem->node);
// add node to the Q list
if (arg & ENERGY_EFFICIENT_ARGUMENT) {
*Q = g_list_insert_sorted(*Q, nodeItem, sort_by_energy);
}
else {
*Q = g_list_insert_sorted (*Q, nodeItem, sort_by_distance);
}
// Update the mapNodes for the specific reached tv
v_map->distance = distance_through_u;
memcpy(&v_map->distance, &distance_through_u, sizeof(gdouble));
memcpy (&v_map->avaiBandwidth, &availBw_through_u, sizeof (gdouble));
memcpy (&v_map->latency, &latency_through_u, sizeof (gdouble));
memcpy(&v_map->power, &power_through_u, sizeof(gdouble));
// Duplicate the predecessor edge into the mapNodes
struct edges_t *e1 = &(v_map->predecessor);
struct edges_t *e2 = &(v->edges[indexEdge]);
duplicate_edge(e1, e2);
//DEBUG_PC ("u->v Edge: %s(%s) --> %s(%s)", e2->aNodeId.nodeId, e2->aEndPointId, e2->zNodeId.nodeId, e2->zEndPointId);
//DEBUG_PC("v-pred aTopology: %s", e2->aTopologyId);
//DEBUG_PC("v-pred zTopology: %s", e2->zTopologyId);
// Check whether v is dstPEId
//DEBUG_PC ("Targeted dstId: %s", s->service_endpoints_id[1].device_uuid);
//DEBUG_PC ("nodeId added to the map: %s", v_map->verticeId.nodeId);
//DEBUG_PC ("Q Length: %d", g_list_length(*Q));
g_free(path_constraints);
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check the feasability of a path wrt the constraints imposed by the request in terms of latency
*
* @param s
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gboolean check_computed_path_feasibility (struct service_t *s, struct compRouteOutputItem_t* p) {
float epsilon = 0.0000001;
struct path_constraints_t* pathCons = get_path_constraints(s);
gboolean ret = TRUE;
if (pathCons->latency == TRUE) {
if ((pathCons->latencyConstraint - p->delay > 0.0) || (fabs(pathCons->latencyConstraint - p->delay) < epsilon)) {
DEBUG_PC("Computed Path (latency: %f) is feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
}
else {
DEBUG_PC("Computed Path (latency: %f) is NOT feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
g_free(pathCons);
return FALSE;
}
}
// Other constraints...
g_free(pathCons);
return ret;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sorting the GList Q items by distance
*
* @param a
* @param b
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint sort_by_distance (gconstpointer a, gconstpointer b) {
//DEBUG_PC ("sort by distance a and b");
g_assert(a != NULL);
g_assert(b != NULL);
//DEBUG_PC ("sort by distance a and b");
struct nodeItem_t *node1 = (struct nodeItem_t *)a;
struct nodeItem_t *node2 = (struct nodeItem_t *)b;
g_assert (node1);
g_assert (node2);
//DEBUG_PC ("a->distance %u; b->distance %u", node1->distance, node2->distance);
//DEBUG_PC("a->latency: %f; b->latency: %f", node1->latency, node2->latency);
//1st criteria, sorting by lowest distance
if (node1->distance > node2->distance)
return 1;
else if (node1->distance < node2->distance)
return 0;
if (node1->distance == node2->distance) {
if (node1->latency > node2->latency)
return 1;
else if (node1->latency <= node2->latency)
return 0;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sorting the GList Q items by distance
*
* @param a
* @param b
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint sort_by_energy(gconstpointer a, gconstpointer b) {
g_assert(a != NULL);
g_assert(b != NULL);
//DEBUG_PC ("sort by distance a and b");
struct nodeItem_t* node1 = (struct nodeItem_t*)a;
struct nodeItem_t* node2 = (struct nodeItem_t*)b;
g_assert(node1);
g_assert(node2);
//1st criteria: sorting by lowest distance
if (node1->distance > node2->distance)
return 1;
if (node1->distance < node2->distance)
return 0;
// 2nd Criteria: sorting by the lowest energy
if (node1->power > node2->power)
return 1;
if (node1->power < node1->power)
return 0;
// 3rd Criteria: by the latency
if (node1->latency > node2->latency)
return 1;
if (node1->latency <= node2->latency)
return 0;
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for graph
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct graph_t * create_graph () {
struct graph_t * g = g_malloc0 (sizeof (struct graph_t));
if (g == NULL) {
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return g;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for mapNodes
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct map_nodes_t * create_map_node () {
struct map_nodes_t * mN = g_malloc0 (sizeof (struct map_nodes_t));
if (mN == NULL) {
DEBUG_PC ("Memory allocation failed");
exit (-1);
}
return mN;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look up for the service in the servieList bound to a serviceUUID
*
* @params serviceUUID
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct service_t* get_service_for_computed_path(gchar* serviceUUID) {
gint i = 0;
for(GList *listnode = g_list_first(serviceList);
listnode;
listnode = g_list_next(listnode), i++) {
struct service_t* s = (struct service_t*)(listnode->data);
if (strcmp(s->serviceId.service_uuid, serviceUUID) == 0)
return s;
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the service type
*
* @param type
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_service_type(guint type) {
switch (type) {
case SERVICE_TYPE_UNKNOWN:
DEBUG_PC("Service Type UNKNOWN");
break;
case SERVICE_TYPE_L3NM:
DEBUG_PC("Service Type L3NM");
break;
case SERVICE_TYPE_L2NM:
DEBUG_PC("Service Type L2NM");
break;
case SERVICE_TYPE_TAPI:
DEBUG_PC("Service Type L2NM");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the port direction
*
* @param direction
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_link_port_direction(guint direction) {
switch (direction) {
case LINK_PORT_DIRECTION_BIDIRECTIONAL:
//DEBUG_PC("Bidirectional Port Direction");
break;
case LINK_PORT_DIRECTION_INPUT:
//DEBUG_PC("Input Port Direction");
break;
case LINK_PORT_DIRECTION_OUTPUT:
//DEBUG_PC("Output Port Direction");
break;
case LINK_PORT_DIRECTION_UNKNOWN:
//DEBUG_PC("Unknown Port Direction");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the port termination direction
*
* @param direction
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_termination_direction(guint direction) {
switch (direction) {
case TERMINATION_DIRECTION_BIDIRECTIONAL:
//DEBUG_PC("Bidirectional Termination Direction");
break;
case TERMINATION_DIRECTION_SINK:
//DEBUG_PC("Input Termination Direction");
break;
case TERMINATION_DIRECTION_SOURCE:
//DEBUG_PC("Output Termination Direction");
break;
case TERMINATION_DIRECTION_UNKNOWN:
//DEBUG_PC("Unknown Termination Direction");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the termination state
*
* @param state
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_termination_state(guint state)
{
switch (state) {
case TERMINATION_STATE_CAN_NEVER_TERMINATE:
//DEBUG_PC("Can never Terminate");
break;
case TERMINATION_STATE_NOT_TERMINATED:
DEBUG_PC("Not terminated");
break;
case TERMINATION_STATE_TERMINATED_SERVER_TO_CLIENT_FLOW:
DEBUG_PC("Terminated server to client flow");
break;
case TERMINATION_STATE_TERMINATED_CLIENT_TO_SERVER_FLOW:
DEBUG_PC("Terminated client to server flow");
break;
case TERMINATION_STATE_TERMINATED_BIDIRECTIONAL:
//DEBUG_PC("Terminated bidirectional");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the capacity unit
*
* @param unit
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_capacity_unit(guint unit) {
switch (unit) {
case CAPACITY_UNIT_TB:
DEBUG_PC("Unit in TB");
break;
case CAPACITY_UNIT_TBPS:
DEBUG_PC("Unit in TB/s");
break;
case CAPACITY_UNIT_GB:
DEBUG_PC("Unit in GB");
break;
case CAPACITY_UNIT_GBPS:
DEBUG_PC("Unit in GB/s");
break;
case CAPACITY_UNIT_MB:
DEBUG_PC("Unit in MB");
break;
case CAPACITY_UNIT_MBPS:
//DEBUG_PC("Unit in MB/s");
break;
case CAPACITY_UNIT_KB:
DEBUG_PC("Unit in KB");
break;
case CAPACITY_UNIT_KBPS:
DEBUG_PC("Unit in KB/s");
break;
case CAPACITY_UNIT_GHZ:
DEBUG_PC("Unit in GHz");
break;
case CAPACITY_UNIT_MHZ:
DEBUG_PC("Unit in MHz");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the link forwarding direction
*
* @param linkFwDir
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_link_forwarding_direction(guint linkFwDir) {
switch (linkFwDir) {
case LINK_FORWARDING_DIRECTION_BIDIRECTIONAL:
DEBUG_PC("BIDIRECTIONAL LINK FORWARDING DIRECTION");
break;
case LINK_FORWARDING_DIRECTION_UNIDIRECTIONAL:
DEBUG_PC("UNIDIRECTIONAL LINK FORWARDING DIRECTION");
break;
case LINK_FORWARDING_DIRECTION_UNKNOWN:
DEBUG_PC("UNKNOWN LINK FORWARDING DIRECTION");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Search a specific contextUuid element into the contextSet
*
* @param contextUuid
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct context_t* find_contextId_in_set(gchar* contextUuid, GList** set) {
//DEBUG_PC("Checking if contextId: %s in in the ContextSet??", contextUuid);
gint i = 0;
for (GList *ln = g_list_first(*set);
ln;
ln = g_list_next(ln)){
struct context_t* c = (struct context_t*)(ln->data);
//DEBUG_PC("Context Item [%d] Id: %s", i, c->contextId);
if (strcmp(contextUuid, c->contextId) == 0) {
//DEBUG_PC("contextId: %s is FOUND in the ContextSet_List", contextUuid);
return c;
}
i++;
}
//DEBUG_PC("contextId: %s NOT FOUND in the ContextSet_List", contextUuid);
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add a specific context uuid into the context set
*
* @param contextUuid
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct context_t* add_contextId_in_set(gchar *contextUuid, GList** set) {
struct context_t* c = g_malloc0(sizeof(struct context_t));
if (c == NULL) {
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
duplicate_string(c->contextId, contextUuid);
// Add the context into the context set
//DEBUG_PC("Adding ContextId: %s", contextUuid);
//DEBUG_PC(" (BEFORE ADDING) Context Set Length: %d", g_list_length(*set));
*set = g_list_append(*set, c);
//DEBUG_PC(" (AFTER ADDING) Context Set Length: %d", g_list_length(*set));
return c;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Find a vertex in a specific graph
*
* @param contextUuid
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* find_vertex_in_graph_context(struct graph_t *g, gchar* deviceId) {
for (gint i = 0; i < g->numVertices; i++) {
struct vertices_t* v = &(g->vertices[i]);
if (strcmp(v->verticeId.nodeId, deviceId) == 0) {
return v;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Adding a deviceId into a graph
*
* @param g
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* add_vertex_in_graph(struct graph_t* g, struct device_t *d) {
g->numVertices++;
struct vertices_t* v = &(g->vertices[g->numVertices - 1]);
duplicate_string(v->verticeId.nodeId, d->deviceId);
memcpy(&v->power_idle, &d->power_idle, sizeof(gdouble));
return v;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Construct the graphs (vertices and edges) bound to every individual context
*
* @param cSet
* @param activeFlag
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_deviceList(GList** cSet, gint activeFlag) {
// Check every device their endpoints
for (GList* listnode = g_list_first(deviceList);
listnode;
listnode = g_list_next(listnode)) {
struct device_t* d = (struct device_t*)(listnode->data);
//DEBUG_PC("Exploring DeviceId: %s", d->deviceId);
if ((activeFlag == 1) && (d->operational_status != 2)) {
// it is only considered devices with operational status enabled, i.e., set to 2
continue;
}
// Check the associated endPoints
for (gint j = 0; j < d->numEndPoints; j++) {
struct endPoint_t* eP = &(d->endPoints[j]);
// Get endPointId (topology, context, device Id and endpoint uuid)
struct endPointId_t* ePid = &(eP->endPointId); //end point id
//DEBUG_PC(" EndPointId: %s || Type: %s", eP->endPointId.endpoint_uuid, d->deviceType);
//DEBUG_PC(" TopologyId: %s || ContextId: %s", eP->endPointId.topology_id.topology_uuid, eP->endPointId.topology_id.contextId);
// Add contextId in ContextSet and the deviceId (+endpoint) into the vertex set
struct context_t *c = find_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
if (c == NULL) {
DEBUG_PC(" contextUuid: %s MUST BE ADDED to ContextSet", eP->endPointId.topology_id.contextId);
c = add_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
}
// Check if the deviceId and endPointUuid are already considered in the graph of the context c
struct vertices_t* v = find_vertex_in_graph_context(&c->g, d->deviceId);
if (v == NULL) {
//DEBUG_PC(" deviceId: %s MUST BE ADDED to the Context Graph", d->deviceId);
v = add_vertex_in_graph(&c->g, d);
}
}
}
//print_contextSet(cSet);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Determine whether a deviceId is in the targetNode list of a specific vertex v
*
* @param v
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct targetNodes_t* find_targeted_vertex_in_graph_context(struct vertices_t* v, gchar *deviceId) {
for (gint k = 0; k < v->numTargetedVertices; k++) {
struct targetNodes_t* w = &(v->targetedVertices[k]);
if (strcmp(w->tVertice.nodeId, deviceId) == 0) {
return w;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add a deviceId a targetNode of a specific vertex v
*
* @param v
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct targetNodes_t* add_targeted_vertex_in_graph_context(struct vertices_t* v, gchar* bDeviceId) {
v->numTargetedVertices++;
struct targetNodes_t* w = &(v->targetedVertices[v->numTargetedVertices - 1]);
duplicate_string(w->tVertice.nodeId, bDeviceId);
return w;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Returns the structure of a device endpoint bound to a specific deviceId and endPointId
*
* @param devId
* @param endPointUuid
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct endPoint_t* find_device_tied_endpoint(gchar* devId, gchar* endPointUuid) {
//DEBUG_PC("devId: %s ePId: %s", devId, endPointUuid);
for (GList* ln = g_list_first(deviceList);
ln;
ln = g_list_next(ln)) {
struct device_t* d = (struct device_t*)(ln->data);
if (strcmp(d->deviceId, devId) != 0) {
continue;
}
// Iterate over the endpoints tied to the deviceId
for (gint j = 0; j < d->numEndPoints; j++) {
struct endPoint_t* eP = &(d->endPoints[j]);
//DEBUG_PC("looked endPointId: %s", eP->endPointId.endpoint_uuid);
if (strcmp(eP->endPointId.endpoint_uuid, endPointUuid) == 0) {
return eP;
}
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Adding the edge/linnk in the targetedNodes w list
*
* @param w
* @param l
* @param activeFlag
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void add_edge_in_targetedVertice_set(struct targetNodes_t* w, struct link_t* l, gint activeFlag) {
//DEBUG_PC("\t targetedVertex: %s", w->tVertice.nodeId);
// Check if the activeFlag is 1. If YES, it is only added to the edges as long as the
// associated endPoint is in status ENABLED, i.e., with operational status set to 2
// Get the endpoints (A and Z) of the link l (assumed P2P)
struct link_endpointId_t* aEndpointId = &(l->linkEndPointId[0]);
struct link_endpointId_t* zEndpointId = &(l->linkEndPointId[1]);
// Get the endPoint Information tied to the device bound to aEndPointId
struct endPoint_t* eP = find_device_tied_endpoint(aEndpointId->deviceId, aEndpointId->endPointId);
if (eP == NULL) {
DEBUG_PC("devId: %s endPointUuid: %s NOT in Device List!!--- Weird", aEndpointId->deviceId, aEndpointId->endPointId);
exit(-1);
}
// Check whether the port in that endPoint (eP) is Active upon the activeFlag being SET
if (activeFlag == 1) {
if (eP->operational_status != 2) // NOT ENABLED, then discard this link
return;
}
// Add the edge into the graph
w->numEdges++;
struct edges_t* e = &(w->edges[w->numEdges - 1]);
// Copy the link Id UUID
duplicate_string(e->linkId, l->linkId);
duplicate_string(e->aNodeId.nodeId, aEndpointId->deviceId);
duplicate_string(e->aEndPointId, aEndpointId->endPointId);
duplicate_string(e->aTopologyId, aEndpointId->topology_id.topology_uuid);
duplicate_string(e->zNodeId.nodeId, zEndpointId->deviceId);
duplicate_string(e->zEndPointId, zEndpointId->endPointId);
duplicate_string(e->zTopologyId, zEndpointId->topology_id.topology_uuid);
//Potential(total) and available capacity
e->unit = eP->potential_capacity.unit;
memcpy(&e->totalCap, &eP->potential_capacity.value, sizeof(gdouble));
memcpy(&e->availCap, &eP->available_capacity.value, sizeof(gdouble));
// Copy interdomain local/remote Ids
memcpy(e->interDomain_localId, eP->inter_domain_plug_in.inter_domain_plug_in_local_id,
strlen(eP->inter_domain_plug_in.inter_domain_plug_in_local_id));
memcpy(e->interDomain_remoteId, eP->inter_domain_plug_in.inter_domain_plug_in_remote_id,
strlen(eP->inter_domain_plug_in.inter_domain_plug_in_remote_id));
// cost value
memcpy(&e->cost, &l->cost_characteristics.cost_value, sizeof(gdouble));
// latency ms
memcpy(&e->delay, &l->latency_characteristics.fixed_latency, sizeof(gdouble));
// energy J/bits ~ power
memcpy(&e->energy, &eP->energyConsumption, sizeof(gfloat));
//DEBUG_PC("Edge - Total/Available Capacity: %f/%f; Cost: %f; Delay: %f, Energy: %f", eP->potential_capacity.value, eP->available_capacity.value,
// l->cost_characteristics.cost_value, l->latency_characteristics.fixed_latency, l->energy_link);
//DEBUG_PC("Graph Edge - Total/Available Capacity: %f/%f; Cost: %f; Delay: %f, Energy: %f", e->totalCap, e->availCap,
// e->cost, e->delay, e->energy);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Searching a specific edge/link by the linkId(UUID)
*
* @param w
* @param l
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* find_edge_in_targetedVertice_set(struct targetNodes_t* w, struct link_t* l) {
for (gint i = 0; i < w->numEdges; i++) {
struct edges_t* e = &(w->edges[i]);
if (strcmp(e->linkId, l->linkId) == 0) {
return e;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief supporting the construction of the graph per context using the explicit
* contents/info of the link list
*
* @param set
* @param activeFlag
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_linklList(GList** set, gint activeFlag) {
// for each link in linkList:
// 1st- Retrieve endpoints A --> B feauture (context Id, device Id, endpoint Id)
// 2st - In the graph associated to the contextId, check wheter A (deviceId) is in the vertices list
// o No, this is weird ... exit
// o Yes, get the other link endpoint (i.e., B) and check whether it exists. If NOT add it, considering
// all the attributes; Otherwise, check whether the link is different from existing edges between A and B
gdouble epsilon = 0.1;
gint j = 0;
for (GList* ln = g_list_first(linkList);
ln;
ln = g_list_next(ln)) {
struct link_t* l = (struct link_t*)(ln->data);
j++;
// link assumed to be P2P A --> B; i.e. 2 endPoints; 1st specifies A and 2nd specifie B
struct link_endpointId_t* aEndpointId = &(l->linkEndPointId[0]);
struct topology_id_t* topologyId = &(aEndpointId->topology_id);
// get the contextId
gchar contextUuid[UUID_CHAR_LENGTH];
duplicate_string(contextUuid, topologyId->contextId);
DEBUG_PC("Link: %s in ContextId: %s", l->linkId, contextUuid);
// Check first contextUuid exists in the cSet
//DEBUG_PC("Length of Context: %d", g_list_length(set));
struct context_t* c = find_contextId_in_set(contextUuid, set);
if (c == NULL) {
DEBUG_PC("ContextId: %s does NOT exist... weird", contextUuid);
exit(-1);
}
// get the device ID of A
gchar aDeviceId[UUID_CHAR_LENGTH];
duplicate_string(aDeviceId, aEndpointId->deviceId);
struct graph_t* g = &(c->g); // get the graph associated to the context c
struct vertices_t* v = find_vertex_in_graph_context(g, aDeviceId);
if (v == NULL) {
DEBUG_PC("%s NOT a VERTEX of contextId: %s ... WEIRD", aDeviceId, contextUuid);
exit(-1);
}
// get the bEndpointId
struct link_endpointId_t* bEndpointId = &(l->linkEndPointId[1]);
gchar bDeviceId[UUID_CHAR_LENGTH];
duplicate_string(bDeviceId, bEndpointId->deviceId);
DEBUG_PC("[%d] -- Link: %s [%s ==> %s]", j-1, l->linkId, aDeviceId, bDeviceId);
// Check whether device B is in the targeted Vertices from A (i.e., v)?
// If not, add B in the targeted vertices B + create the edge and add it
// If B exist, check whether the explored link/edge is already in the list of edges
struct targetNodes_t* w = find_targeted_vertex_in_graph_context(v, bDeviceId);
if (w == NULL) {
DEBUG_PC("[%s] is PEER of [%s]", bDeviceId, v->verticeId.nodeId);
w = add_targeted_vertex_in_graph_context(v, bDeviceId);
add_edge_in_targetedVertice_set(w, l, activeFlag);
}
else {
// w exists, it is needed to check whether the edge (link) should be added
struct edges_t* e = find_edge_in_targetedVertice_set(w, l);
if (e == NULL) {
// Add the link into the list
add_edge_in_targetedVertice_set(w, l, activeFlag);
}
else {
DEBUG_PC("The link already exists ...");
continue;
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Create the set of (distinct) contexts with the deviceList and linkList
*
* @param cSet
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet(GList** cSet) {
gint activeFlag = 0; // this means that all the devices/links (regardless they are active or not) are considered
// devices are tied to contexts, i.e. depending on the contextId of the devices
build_contextSet_deviceList(cSet, activeFlag);
DEBUG_PC("Length for the Context Set: %d", g_list_length(*cSet));
// Once the diverse contexts are created and the devices/endpoints asigned to the
// respective graph tied to each context, it is needed to create the edges
build_contextSet_linklList(cSet, activeFlag);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Create the set of (distinct) contexts with the deviceList and linkList with
* operational status active
*
* @param cSet
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_active(GList** cSet) {
gint activeFlag = 1; // this means that all the devices (regardless they are active or not) are considered
// devices are tied to contexts, i.e. depending on the contextId of the devices
build_contextSet_deviceList(cSet, activeFlag);
DEBUG_PC("Length for the Context Set: %d", g_list_length(*cSet));
// Once the diverse contexts are created and the devices/endpoints asigned to the
// respective graph tied to each context, it is needed to create the edges
build_contextSet_linklList(cSet, activeFlag);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Print the contents of the ContextIds
*
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_contextSet(GList* set) {
DEBUG_PC("Printing the ContextSet w/ number of Elements: %d", g_list_length(set));
for (GList* ln = g_list_first(set);
ln;
ln = g_list_next(ln)) {
struct context_t* c = (struct context_t*)(ln->data);
DEBUG_PC("-------------------------------------------------------------");
DEBUG_PC(" Context Id: %s", c->contextId);
DEBUG_PC("-------------------------------------------------------------");
struct graph_t* g = &(c->g);
for (gint j = 0; j < g->numVertices; j++) {
struct vertices_t* v = &(g->vertices[j]);
DEBUG_PC(" Head Device Id: %s", v->verticeId.nodeId);
for (gint k = 0; k < v->numTargetedVertices; k++) {
struct targetNodes_t* w = &(v->targetedVertices[k]);
DEBUG_PC(" [%d] --- Peer Device Id: %s", k, w->tVertice.nodeId);
for (gint l = 0; l < w->numEdges; l++) {
struct edges_t* e = &(w->edges[l]);
DEBUG_PC(" \t link Id: %s", e->linkId);
DEBUG_PC(" \t aEndPointId: %s", e->aEndPointId);
DEBUG_PC(" \t zEndPointId: %s", e->zEndPointId);
DEBUG_PC(" \t Available Capacity: %f, Latency: %f, Cost: %f", e->availCap, e->delay, e->cost);
DEBUG_PC(" \t aTopologyId: %s", e->aTopologyId);
DEBUG_PC(" \t zTopologyId: %s", e->zTopologyId);
}
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check whether src and dst PE nodeId of the req are the same
*
* @param r
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint same_src_dst_pe_nodeid(struct service_t* s)
{
// Check that source PE and dst PE are NOT the same, i.e., different ingress and egress endpoints (iEp, eEp)
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[0]);
struct service_endpoints_id_t* eEp = &(s->service_endpoints_id[1]);
gchar* iEpUUID = iEp->endpoint_uuid;
gchar* eEpUUID = eEp->endpoint_uuid;
gchar* iDevUUID = iEp->device_uuid;
gchar* eDevUUID = eEp->device_uuid;
// Compare the device uuids
if (strcmp(iDevUUID, eDevUUID) != 0) {
DEBUG_PC("DIFFERENT --- iDevId: %s and eDevId: %s", iDevUUID, eDevUUID);
return 1;
}
// Compare the endpoints (ports)
if (strcmp(iEpUUID, eEpUUID) != 0) {
DEBUG_PC("DIFFERENT --- iEpUUID: %s and eEpUUID: %s", iEpUUID, eEpUUID);
return 1;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Handles issues with the route computation
*
* @param route
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void comp_route_connection_issue_handler (struct compRouteOutput_t *path, struct service_t *s)
{
g_assert(path); g_assert(s);
// Increase the number of computed routes/paths despite there was an issue to be reported
path->numPaths++;
// Copy the serviceId
copy_service_id(&(path->serviceId), &(s->serviceId));
// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
for (gint i = 0; i < s->num_service_endpoints_id; i++) {
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[i]);
struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[i]);
copy_service_endpoint_id(oEp, iEp);
}
path->num_service_endpoints_id = s->num_service_endpoints_id;
path->noPathIssue = NO_PATH_CONS_ISSUE;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief released the allocated memory fo compRouteOutputList_t
*
* @param ro
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_compRouteOutputList (struct compRouteOutputList_t *ro)
{
g_assert (ro);
g_free (ro);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief creates a copy of the underlying graph
*
* @param originalGraph
* @param destGraph
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_graph (struct graph_t *originalGraph, struct graph_t *destGraph) {
g_assert (originalGraph); g_assert (destGraph);
destGraph->numVertices = originalGraph->numVertices;
for (gint i = 0; i < originalGraph->numVertices; i++) {
struct vertices_t *oVertex = &(originalGraph->vertices[i]);
struct vertices_t *dVertex = &(destGraph->vertices[i]);
dVertex->numTargetedVertices = oVertex->numTargetedVertices;
duplicate_node_id (&oVertex->verticeId, &dVertex->verticeId);
memcpy(&dVertex->power_idle, &oVertex->power_idle, sizeof(gdouble));
for (gint j = 0; j < oVertex->numTargetedVertices; j++) {
struct targetNodes_t *oTargetedVertex = &(oVertex->targetedVertices[j]);
struct targetNodes_t *dTargetedVertex = &(dVertex->targetedVertices[j]);
duplicate_node_id (&oTargetedVertex->tVertice, &dTargetedVertex->tVertice);
dTargetedVertex->numEdges = oTargetedVertex->numEdges;
for (gint k = 0; k < oTargetedVertex->numEdges; k++) {
struct edges_t *oEdge = &(oTargetedVertex->edges[k]);
struct edges_t *dEdge = &(dTargetedVertex->edges[k]);
duplicate_edge (dEdge, oEdge);
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to retrieve from the graph the edge instance associated to the
* pathLink (pL)
*
* @param pL
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* get_edge_from_graph_by_linkId(struct pathLink_t* pL, struct graph_t* g) {
g_assert(pL);
g_assert(g);
for (gint i = 0; i < g->numVertices; i++) {
struct vertices_t* v = &(g->vertices[i]);
for (gint j = 0; j < v->numTargetedVertices; j++) {
struct targetNodes_t* tv = &(v->targetedVertices[j]);
for (gint k = 0; k < tv->numEdges; k++) {
struct edges_t* e = &(tv->edges[k]);
if (strcmp(e->linkId, pL->linkId) == 0) {
return e;
}
}
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to retrieve from the graph the reverse edge (rev_e) associated to an edge (e)
*
* @param e
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* get_reverse_edge_from_the_graph(struct edges_t* e, struct graph_t* g) {
g_assert(e);
g_assert(g);
for (gint i = 0; i < g->numVertices; i++) {
struct vertices_t* v = &(g->vertices[i]);
// Check Route Element zNodeId with the v->verticeId
if (compare_node_id(&e->zNodeId, &v->verticeId) != 0)
continue;
// Check Route Element zNodeis with any of reachable targeted vertices from v
gboolean foundTargVert = FALSE;
gint indexTargVert = -1;
for (gint j = 0; j < v->numTargetedVertices; j++) {
struct targetNodes_t* tv = &(v->targetedVertices[j]);
if (compare_node_id(&e->aNodeId, &tv->tVertice) == 0)
{
foundTargVert = TRUE;
indexTargVert = j;
break;
}
}
if (foundTargVert == FALSE) {
continue;
}
// The targeted vertice is found, then check matching with the endpoints
struct targetNodes_t* tv = &(v->targetedVertices[indexTargVert]);
for (gint k = 0; k < tv->numEdges; k++) {
struct edges_t* rev_e = &(tv->edges[k]);
if ((strcmp(rev_e->aEndPointId, e->zEndPointId) == 0) &&
(strcmp(rev_e->zEndPointId, e->aEndPointId) == 0)) {
return rev_e;
}
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to reflect in the graph the assigned/allocated resources contained in the path p
* considering the needs (e.g., bandwidth) of service s
*
* @param p
* @param s
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void allocate_graph_resources (struct path_t *p, struct service_t *s, struct graph_t *g)
{
g_assert (p); g_assert (s); g_assert (g);
// Retrieve the requested bw by the service
struct path_constraints_t* pathCons = get_path_constraints(s);
for (gint i = 0; i < p->numPathLinks; i++) {
struct pathLink_t* pL = &(p->pathLinks[i]);
// get the edge associated to the linkId in the graph
struct edges_t* e = get_edge_from_graph_by_linkId(pL, g);
if (e == NULL) {
DEBUG_PC("The linkId: %s is NOT found in the Graph!!!", pL->linkId);
exit(-1);
}
//Update the availBw in the edge
gdouble resBw = e->availCap - pathCons->bwConstraint;
DEBUG_PC("Updating the Avail Bw @ edge/link: %s", e->linkId);
DEBUG_PC("Initial avaiCap @ e/link: %f, demanded Bw: %f, resulting Avail Bw: %f", e->availCap, pathCons->bwConstraint, resBw);
memcpy(&e->availCap, &resBw, sizeof(gdouble));
DEBUG_PC("Final e/link avail Bw: %f", e->availCap);
}
g_free(pathCons);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to reflect in the graph the assigned/allocated resources contained in the reverse direction of the path p
* considering the needs (e.g., bandwidth) of service s
*
* @param p
* @param s
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void allocate_graph_reverse_resources(struct path_t* p, struct service_t * s, struct graph_t* g)
{
g_assert(p); g_assert(s); g_assert(g);
struct path_constraints_t* pathCons = get_path_constraints(s);
for (gint i = 0; i < p->numPathLinks; i++) {
struct pathLink_t* pL = &(p->pathLinks[i]);
struct edges_t* e = get_edge_from_graph_by_linkId(pL, g);
if (e == NULL) {
DEBUG_PC("The linkId: %s is NOT found in the Graph!!!", pL->linkId);
exit(-1);
}
struct edges_t* rev_e = get_reverse_edge_from_the_graph(e, g);
if (rev_e == NULL) {
DEBUG_PC("the reverse edge of linkId: %s is NOT found in the Graph!!!", pL->linkId);
exit(-1);
}
//Update the availBw in the edge
gdouble resBw = rev_e->availCap - pathCons->bwConstraint;
DEBUG_PC("Updating the Avail Bw @ reverse edge/link: %s", rev_e->linkId);
DEBUG_PC("Initial avaiCap @ reverse edge e/link: %f, demanded Bw: %f, resulting Avail Bw: %f", rev_e->availCap, pathCons->bwConstraint, resBw);
memcpy(&rev_e->availCap, &resBw, sizeof(gdouble));
DEBUG_PC("Final reverse edge e/link avail Bw: %f", rev_e->availCap);
}
g_free(pathCons);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to printall the computed paths for the requested network connectivity services
*
* @param routeList
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path_connection_list(struct compRouteOutputList_t* routeList) {
g_assert(routeList);
for (gint i = 0; i < routeList->numCompRouteConnList; i++) {
DEBUG_PC("==================== Service instance: %d ===================", i);
struct compRouteOutput_t* rO = &(routeList->compRouteConnection[i]);
DEBUG_PC("num service endpoints: %d", rO->num_service_endpoints_id);
struct serviceId_t* s = &(rO->serviceId);
DEBUG_PC("ContextId: %s, ServiceId: %s", s->contextId, s->service_uuid);
DEBUG_PC("ingress - %s[%s]", rO->service_endpoints_id[0].device_uuid,
rO->service_endpoints_id[0].endpoint_uuid);
DEBUG_PC("egress - %s [%s]", rO->service_endpoints_id[1].device_uuid,
rO->service_endpoints_id[1].endpoint_uuid);
if (rO->noPathIssue == NO_PATH_CONS_ISSUE) {
DEBUG_PC("NO PATH SUCCESSFULLY COMPUTED");
continue;
}
// Path
DEBUG_PC("Number of paths: %d", rO->numPaths);
for (gint j = 0; j < rO->numPaths; j++) {
struct path_t* p = &(rO->paths[j]);
print_path_t(p);
}
}
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief update statistics for the path computation operations
*
* @param routeConnList
* @param d
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void update_stats_path_comp(struct compRouteOutputList_t* routeConnList, struct timeval d, gint numSuccesPathComp, gint numPathCompIntents) {
g_assert(routeConnList);
total_path_comp_time.tv_sec = total_path_comp_time.tv_sec + d.tv_sec;
total_path_comp_time.tv_usec = total_path_comp_time.tv_usec + d.tv_usec;
total_path_comp_time = tv_adjust(total_path_comp_time);
gdouble path_comp_time_msec = (((total_path_comp_time.tv_sec) * 1000) + ((total_path_comp_time.tv_usec) / 1000));
gdouble av_alg_comp_time = ((path_comp_time_msec / numSuccesPathComp));
DEBUG_PC("\t --- STATS PATH COMP ----");
DEBUG_PC("Succesfully Comp: %d | Path Comp Requests: %d", numSuccesPathComp, numPathCompIntents);
DEBUG_PC("AV. PATH COMP ALG. TIME: %f ms", av_alg_comp_time);
gint i = 0;
for (GList* listnode = g_list_first(serviceList);
listnode;
listnode = g_list_next(listnode), i++) {
struct service_t* s = (struct service_t*)(listnode->data);
char* eptr;
for (gint j = 0; j < s->num_service_constraints; j++) {
struct constraint_t* constraints = &(s->constraints[j]);
if (strncmp((const char*)(constraints->constraint_type), "bandwidth", 9) == 0) {
totalReqBw += (gdouble)(strtod((char*)constraints->constraint_value, &eptr));
}
}
}
for (gint k = 0; k < routeConnList->numCompRouteConnList; k++) {
struct compRouteOutput_t* rO = &(routeConnList->compRouteConnection[k]);
if (rO->noPathIssue == NO_PATH_CONS_ISSUE) {
continue;
}
// Get the requested service bw bound to that computed path
struct path_t* p = &(rO->paths[0]);
struct service_t* s = get_service_for_computed_path(rO->serviceId.service_uuid);
if (s == NULL) {
DEBUG_PC("Weird the service associated to a path is not found");
exit(-1);
}
for (gint l = 0; l < s->num_service_constraints; l++) {
struct constraint_t* constraints = &(s->constraints[l]);
char* eptr;
if (strncmp((const char*)(constraints->constraint_type), "bandwidth", 9) == 0) {
totalServedBw += (gdouble)(strtod((char*)constraints->constraint_value, &eptr));
}
}
}
gdouble avServedRatio = totalServedBw / totalReqBw;
DEBUG_PC("AV. Served Ratio: %f", avServedRatio);
gdouble avBlockedBwRatio = (gdouble)(1.0 - avServedRatio);
DEBUG_PC("AV. BBE: %f", avBlockedBwRatio);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Eliminate active service path
*
* @param actServPath
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_active_service_path(struct activeServPath_t* actServPath) {
g_assert(actServPath);
g_free(actServPath);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Eliminate active service
*
* @param actService
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_active_service(struct activeService_t* actService) {
g_assert(actService);
g_list_free_full(g_steal_pointer(&actService->activeServPath), (GDestroyNotify)destroy_active_service_path);
g_free(actService);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Eliminate a requested service
*
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_requested_service(struct service_t* s) {
g_assert(s);
g_free(s);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Eliminate a device
*
* @param d
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_device(struct device_t* d) {
g_assert(d);
g_free(d);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Eliminate a link from the linkList
*
* @param d
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_link(struct link_t* l) {
g_assert(l);
g_free(l);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Eliminate a context from the contextSet
*
* @param d
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_context(struct context_t* c) {
g_assert(c);
g_free(c);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Excecution Dijkstra algorithm
*
* @param srcMapIndex
* @param dstMapIndex
* @param g
* @param s
* @param mapNodes
* @param SN
* @param RP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void dijkstra(gint srcMapIndex, gint dstMapIndex, struct graph_t* g, struct service_t* s,
struct map_nodes_t* mapNodes, struct nodes_t* SN, struct compRouteOutputItem_t* RP,
guint arg) {
g_assert(s);g_assert(g);
// Set params into mapNodes related to the source nodes of the request
mapNodes->map[srcMapIndex].distance = 0.0;
mapNodes->map[srcMapIndex].latency = 0.0;
mapNodes->map[srcMapIndex].avaiBandwidth = 0.0;
mapNodes->map[srcMapIndex].power = 0.0;
// Initialize the set Q and S
GList *S = NULL, *Q = NULL;
gint indexVertice = -1;
// Add the source into the Q
struct nodeItem_t* nodeItem = g_malloc0(sizeof(struct nodeItem_t));
if (nodeItem == NULL) {
DEBUG_PC("memory allocation failed\n");
exit(-1);
}
// initialize some nodeItem attributes
nodeItem->distance = 0.0;
nodeItem->latency = 0.0;
nodeItem->power = 0.0;
duplicate_node_id(&mapNodes->map[srcMapIndex].verticeId, &nodeItem->node);
// Select the optimization process
if (arg & ENERGY_EFFICIENT_ARGUMENT)
Q = g_list_insert_sorted(Q, nodeItem, sort_by_energy);
// more "if" according to different optimization criteria ...
else
Q = g_list_insert_sorted(Q, nodeItem, sort_by_distance);
// Check whether there is spurNode (SN) and rootPath (RP)
if (SN != NULL && RP != NULL) {
struct routeElement_t* re;
for (gint j = 0; j < RP->numRouteElements; j++) {
// Get the source and target Nodes of the routeElement within the rootPath
re = &RP->routeElement[j];
DEBUG_PC("root Link: aNodeId: %s (%s) --> zNodeiId: %s (%s)", re->aNodeId.nodeId, re->aEndPointId, re->zNodeId.nodeId, re->zEndPointId);
// if ingress of the root link (aNodeId) is the spurNode, then stops
if (compare_node_id(&re->aNodeId, SN) == 0) {
DEBUG_PC("Ingress Node rootLink %s = spurNode %s; STOP exploring rootPath (RP)", re->aNodeId.nodeId, SN->nodeId);
break;
}
// Extract from Q
GList* listnode = g_list_first(Q);
struct nodeItem_t* node = (struct nodeItem_t*)(listnode->data);
Q = g_list_remove(Q, node);
indexVertice = graph_vertice_lookup(node->node.nodeId, g);
g_assert(indexVertice >= 0);
// Get the indexTargetedVertice
gint indexTVertice = -1;
indexTVertice = graph_targeted_vertice_lookup(indexVertice, re->zNodeId.nodeId, g);
gint done = check_link(node, indexVertice, indexTVertice, g, s, &S, &Q, mapNodes, arg);
(void)done;
// Add to the S list
S = g_list_append(S, node);
}
// Check that the first node in Q set is SpurNode, otherwise something went wrong ...
if (compare_node_id(&re->aNodeId, SN) != 0) {
DEBUG_PC ("root Link: aNodeId: %s is NOT the spurNode: %s -- something wrong", re->aNodeId.nodeId, SN->nodeId);
g_list_free_full(g_steal_pointer(&S), g_free);
g_list_free_full(g_steal_pointer(&Q), g_free);
return;
}
}
while (g_list_length(Q) > 0) {
//Extract from Q set
GList* listnode = g_list_first(Q);
struct nodeItem_t* node = (struct nodeItem_t*)(listnode->data);
Q = g_list_remove(Q, node);
DEBUG_PC("Q length: %d", g_list_length(Q));
DEBUG_PC("Explored DeviceId: %s", node->node.nodeId);
// scan all the links from u within the graph
indexVertice = graph_vertice_lookup(node->node.nodeId, g);
g_assert(indexVertice >= 0);
// Check the targeted vertices from u
for (gint i = 0; i < g->vertices[indexVertice].numTargetedVertices; i++) {
gint done = check_link(node, indexVertice, i, g, s, &S, &Q, mapNodes, arg);
(void)done;
}
// Add node into the S Set
S = g_list_append(S, node);
//DEBUG_PC ("S length: %d", g_list_length (S));
}
g_list_free_full(g_steal_pointer(&S), g_free);
g_list_free_full(g_steal_pointer(&Q), g_free);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief KSP computation using Dijkstra algorithm
*
* @param pred
* @param g
* @param s
* @param SN
* @param RP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint ksp_comp(struct pred_t* pred, struct graph_t* g, struct service_t* s,
struct nodes_t* SN, struct compRouteOutputItem_t* RP,
struct map_nodes_t* mapNodes, guint arg) {
g_assert(pred); g_assert(g); g_assert(s);
DEBUG_PC("SOURCE: %s --> DESTINATION: %s", s->service_endpoints_id[0].device_uuid,
s->service_endpoints_id[1].device_uuid);
// Check the both ingress src and dst endpoints are in the graph
gint srcMapIndex = get_map_index_by_nodeId(s->service_endpoints_id[0].device_uuid, mapNodes);
if (srcMapIndex == -1) {
DEBUG_PC("ingress DeviceId: %s NOT in G", s->service_endpoints_id[0].device_uuid);
return -1;
}
gint dstMapIndex = get_map_index_by_nodeId(s->service_endpoints_id[1].device_uuid, mapNodes);
if (dstMapIndex == -1) {
DEBUG_PC("egress DeviceId: %s NOT in G", s->service_endpoints_id[1].device_uuid);
return -1;
}
//DEBUG_PC("srcMapIndex: %d (node: %s)", srcMapIndex, mapNodes->map[srcMapIndex].verticeId.nodeId);
//DEBUG_PC("dstMapIndex: %d (node: %s)", dstMapIndex, mapNodes->map[dstMapIndex].verticeId.nodeId);
// Compute the shortest path route
dijkstra(srcMapIndex, dstMapIndex, g, s, mapNodes, SN, RP, arg);
// Check that a feasible solution in term of latency and bandwidth is found
gint map_dstIndex = get_map_index_by_nodeId(s->service_endpoints_id[1].device_uuid, mapNodes);
struct map_t* dest_map = &mapNodes->map[map_dstIndex];
if (!(dest_map->distance < INFINITY_COST)) {
DEBUG_PC("DESTINATION: %s NOT reachable", s->service_endpoints_id[1].device_uuid);
return -1;
}
DEBUG_PC("AvailBw @ %s is %f", dest_map->verticeId.nodeId, dest_map->avaiBandwidth);
// Check that the computed available bandwidth is larger than 0.0
if (dest_map->avaiBandwidth <= (gfloat)0.0) {
DEBUG_PC("DESTINATION %s NOT REACHABLE", s->service_endpoints_id[1].device_uuid);
return -1;
}
DEBUG_PC("DESTINATION %s REACHABLE", s->service_endpoints_id[1].device_uuid);
// Handle predecessors
build_predecessors(pred, s, mapNodes);
return 1;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief set the path parameters (e.g., latency, cost, power, ...) to an under-constructed
* path from the computed map vertex
*
* @param p
* @param mapV
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void set_path_attributes(struct compRouteOutputItem_t* p, struct map_t* mapV) {
g_assert(p); g_assert(mapV);
memcpy(&p->cost, &mapV->distance, sizeof(gdouble));
memcpy(&p->availCap, &mapV->avaiBandwidth, sizeof(mapV->avaiBandwidth));
memcpy(&p->delay, &mapV->latency, sizeof(mapV->latency));
memcpy(&p->power, &mapV->power, sizeof(gdouble));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief K-CSPF algorithm execution (YEN algorithm)
*
* @param s
* @param path
* @param g
* @param optimization_flag
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void alg_comp(struct service_t* s, struct compRouteOutput_t* path, struct graph_t* g, guint arg) {
g_assert(s); g_assert(path); g_assert(g);
// create map of devices/nodes to handle the path computation using the context
struct map_nodes_t* mapNodes = create_map_node();
build_map_node(mapNodes, g);
// predecessors to store the computed path
struct pred_t* predecessors = create_predecessors();
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[0]);
struct service_endpoints_id_t* eEp = &(s->service_endpoints_id[1]);
DEBUG_PC("=======================================================================================");
DEBUG_PC("STARTING PATH COMP FOR %s[%s] --> %s[%s]", iEp->device_uuid, iEp->endpoint_uuid, eEp->device_uuid, eEp->endpoint_uuid);
// Compute the 1st KSP path
gint done = ksp_comp(predecessors, g, s, NULL, NULL, mapNodes, arg);
if (done == -1) {
DEBUG_PC("NO PATH for %s[%s] --> %s[%s]", iEp->device_uuid, iEp->endpoint_uuid, eEp->device_uuid, eEp->endpoint_uuid);
comp_route_connection_issue_handler(path, s);
g_free(mapNodes); g_free(predecessors);
return;
}
// Construct the path from the computed predecessors
struct compRouteOutputItem_t* p = create_path_item();
//print_predecessors(predecessors);
build_path(p, predecessors, s);
gint indexDest = get_map_index_by_nodeId(eEp->device_uuid, mapNodes);
struct map_t* dst_map = &mapNodes->map[indexDest];
// Get the delay and cost
set_path_attributes(p, dst_map);
// Add the computed path, it may be a not feasible path, but at the end it is
// checked all the feasible paths, and select the first one
print_path(p);
// Copy the serviceId
copy_service_id(&path->serviceId, &s->serviceId);
// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
for (gint i = 0; i < s->num_service_endpoints_id; i++) {
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[i]);
struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[i]);
copy_service_endpoint_id(oEp, iEp);
}
path->num_service_endpoints_id = s->num_service_endpoints_id;
DEBUG_PC("COMPUTE UP TO K Feasible Paths A[%d]", MAX_KSP_VALUE);
// Create A and B sets of paths to handle the YEN algorithm
struct path_set_t *A = create_path_set(), *B = create_path_set();
// Add 1st Computed path into A->paths[0]
duplicate_path(p, &A->paths[0]);
A->numPaths++;
g_free(predecessors); g_free(p);
for (gint k = 1; k < MAX_KSP_VALUE; k++) {
DEBUG_PC("*************************** kth (%d) ***********************************", k);
struct compRouteOutputItem_t* p = create_path_item();
duplicate_path(&A->paths[k - 1], p);
// The spurNode ranges from near-end node of the first link to the near-end of the last link forming the kth path
gint i = 0;
struct compRouteOutputItem_t* rootPath = create_path_item();
for (i = 0; i < p->numRouteElements; i++) {
struct nodes_t *spurNode = create_node(), *nextSpurNode = create_node();
struct routeElement_t* re = &(p->routeElement[i]);
// Create predecessors to store the computed path
struct pred_t* predecessors = create_predecessors();
// Clear previous mapNodes, i.e. create it again
g_free(mapNodes);
mapNodes = create_map_node();
build_map_node(mapNodes, g);
struct nodes_t* n = &re->aNodeId;
duplicate_node_id(n, spurNode);
n = &re->zNodeId;
duplicate_node_id(n, nextSpurNode);
DEBUG_PC("spurNode: %s --> nextSpurNode: %s", spurNode->nodeId, nextSpurNode->nodeId);
// rootPath contains a set of links of A[k-1] from the source Node till the SpurNode -> NextSpurNode
// Example: A[k-1] = {L1, L2, L3, L4}, i.e. " Node_a -- L1 --> Node_b -- L2 --> Node_c -- L3 --> Node_d -- L4 --> Node_e "
// E.g., for the ith iteration if the spurNode = Node_c and NextSpurNode = Node_d; then rootPath = {L1, L2, L3}
add_routeElement_path_back(re, rootPath);
DEBUG_PC("\n");
DEBUG_PC("^^^^^^^rootPath^^^^^^^");
print_path(rootPath);
// For all existing and computed paths p in A check if from the source to the NextSpurNode
// the set of links matches with those contained in the rootPath
// If YES, remove from the auxiliary graph the next link in p from NextSpurNode
// Otherwise do nothing
struct graph_t* gAux = create_graph();
duplicate_graph(g, gAux);
// Modified graph
modify_targeted_graph(gAux, A, rootPath, spurNode);
// Trigger the computation of the path from src to dst constrained to traverse all the links from src
// to spurNode contained into rootPath over the resulting graph
if (ksp_comp(predecessors, gAux, s, spurNode, rootPath, mapNodes, arg) == -1) {
DEBUG_PC("FAILED SP from %s via spurNode: %s to %s", iEp->device_uuid, spurNode->nodeId, eEp->device_uuid);
g_free(nextSpurNode); g_free(spurNode);
g_free(gAux); g_free(predecessors);
continue;
}
DEBUG_PC("SUCCESFUL SP from %s via spurNode: %s to %s", iEp->device_uuid, spurNode->nodeId, eEp->device_uuid);
// Create the node list from the predecessors
struct compRouteOutputItem_t* newKpath = create_path_item();
build_path(newKpath, predecessors, s);
DEBUG_PC("new K (for k: %d) Path is built", k);
gint indexDest = get_map_index_by_nodeId(eEp->device_uuid, mapNodes);
struct map_t* dst_map = &mapNodes->map[indexDest];
set_path_attributes(newKpath, dst_map);
DEBUG_PC("New PATH (@ kth: %d) ADDED to B[%d] - {Path Cost: %f, e2e latency: %f, bw: %f, Power: %f ", k, B->numPaths, newKpath->cost,
newKpath->delay, newKpath->availCap, newKpath->power);
// Add the computed kth SP to the heap B
duplicate_path(newKpath, &B->paths[B->numPaths]);
B->numPaths++;
DEBUG_PC("Number of B paths: %d", B->numPaths);
g_free(newKpath); g_free(nextSpurNode); g_free(spurNode);
g_free(gAux); g_free(predecessors);
}
// If B is empty then stops
if (B->numPaths == 0) {
DEBUG_PC("B does not have any path ... the stops kth computation");
break;
}
// Sort the potential B paths according to different optimization parameters
sort_path_set(B, arg);
// Add the lowest path into A[k]
DEBUG_PC("-------------------------------------------------------------");
DEBUG_PC("Append SP for B[0] to A[%d] --- Cost: %f, Latency: %f, Power: %f", A->numPaths, B->paths[0].cost,
B->paths[0].delay, B->paths[0].power);
duplicate_path(&B->paths[0], &A->paths[A->numPaths]);
A->numPaths++;
DEBUG_PC("A Set size: %d", A->numPaths);
DEBUG_PC("-------------------------------------------------------------");
// Remove/Pop front element from the path set B (i.e. remove B[0])
pop_front_path_set(B);
DEBUG_PC("B Set Size: %d", B->numPaths);
}
// Copy the serviceId
copy_service_id(&path->serviceId, &s->serviceId);
// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
for (gint m = 0; m < s->num_service_endpoints_id; m++) {
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[m]);
struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[m]);
copy_service_endpoint_id(oEp, iEp);
}
path->num_service_endpoints_id = s->num_service_endpoints_id;
// Print all the paths i A
for (gint h = 0; h < A->numPaths; h++) {
DEBUG_PC("================== A[%d] =======================", h);
print_path(&A->paths[h]);
}
DEBUG_PC("Number of paths: %d", path->numPaths);
// For all the computed paths in A, pick the one being feasible wrt the service constraints
for (gint ksp = 0; ksp < A->numPaths; ksp++) {
if (ksp >= MAX_KSP_VALUE) {
DEBUG_PC("Number Requested paths (%d) REACHED - STOP", ksp);
break;
}
gdouble feasibleRoute = check_computed_path_feasibility(s, &A->paths[ksp]);
if (feasibleRoute == TRUE) {
DEBUG_PC("A[%d] available: %f, pathCost: %f; latency: %f, Power: %f", ksp, A->paths[ksp].availCap,
A->paths[ksp].cost, A->paths[ksp].delay, A->paths[ksp].power);
struct compRouteOutputItem_t* pathaux = &A->paths[ksp];
path->numPaths++;
struct path_t* targetedPath = &path->paths[path->numPaths - 1];
duplicate_path_t(pathaux, targetedPath);
print_path_t(targetedPath);
remove_path_set(A);
remove_path_set(B);
return;
}
}
remove_path_set(A);
remove_path_set(B);
// No paths found --> Issue
DEBUG_PC("K-SP failed!!!");
comp_route_connection_issue_handler(path, s);
return;
}