Skip to content
Snippets Groups Projects
l3_centralizedattackdetectorServiceServicerImpl.py 31.5 KiB
Newer Older
# Copyright 2021-2023 H2020 TeraFlow (https://www.teraflow-h2020.eu/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

ldemarcosm's avatar
ldemarcosm committed
from __future__ import print_function
from datetime import datetime
ldemarcosm's avatar
ldemarcosm committed
import os
import numpy as np
import onnxruntime as rt
ldemarcosm's avatar
ldemarcosm committed
import logging
delacal's avatar
delacal committed
import time
from common.proto.l3_centralizedattackdetector_pb2 import Empty
from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer

from common.proto.l3_attackmitigator_pb2 import L3AttackmitigatorOutput

from common.proto.monitoring_pb2 import KpiDescriptor
from common.proto.kpi_sample_types_pb2 import KpiSampleType

from monitoring.client.MonitoringClient import MonitoringClient
from common.proto.monitoring_pb2 import Kpi
from common.tools.timestamp.Converters import timestamp_utcnow_to_float
delacal's avatar
delacal committed
from common.proto.context_pb2 import Timestamp, SliceId, ConnectionId
ldemarcosm's avatar
ldemarcosm committed

from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient

ldemarcosm's avatar
ldemarcosm committed
LOGGER = logging.getLogger(__name__)
current_dir = os.path.dirname(os.path.abspath(__file__))
MODEL_FILE = os.path.join(current_dir, "ml_model/crypto_5g_rf_spider_features.onnx")
ldemarcosm's avatar
ldemarcosm committed

class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer):

    """
    Initialize variables, prediction model and clients of components used by CAD
ldemarcosm's avatar
ldemarcosm committed
    def __init__(self):
        LOGGER.info("Creating Centralized Attack Detector Service")

        onnx_model = ox.load_model(MODEL_FILE)
        meta = onnx_model.metadata_props.add()
        meta.key = "key"
        meta.value = "value"
        LOGGER.debug(onnx_model.metadata_props[0])

        self.inference_values = []
        self.inference_results = []
        self.model = rt.InferenceSession(MODEL_FILE)
        
        '''self.model._model_meta = metadata_proto
        meta = self.model.get_modelmeta()
        LOGGER.debug(meta.description)
        time.sleep(10)'''
        
        self.input_name = self.model.get_inputs()[0].name
        self.label_name = self.model.get_outputs()[0].name
        self.prob_name = self.model.get_outputs()[1].name
        self.monitoring_client = MonitoringClient()
        self.service_ids = []
        self.monitored_kpis = {
            "l3_security_status": {
                "kpi_id": None,
                "description": "L3 - Confidence of the cryptomining detector in the security status in the last time interval of the service {service_id}",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_SECURITY_STATUS_CRYPTO,
                "service_ids": [],
            },
            "l3_ml_model_confidence": {
                "kpi_id": None,
                "description": "L3 - Security status of the service in a time interval of the service {service_id} (“0” if no attack has been detected on the service and “1” if a cryptomining attack has been detected)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_ML_CONFIDENCE,
                "service_ids": [],
            },
            "l3_unique_attack_conns": {
                "kpi_id": None,
                "description": "L3 - Number of attack connections detected in a time interval of the service {service_id} (attacks of the same connection [origin IP, origin port, destination IP and destination port] are only considered once)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACK_CONNS,
                "service_ids": [],
            },
            "l3_unique_compromised_clients": {
                "kpi_id": None,
                "description": "L3 - Number of unique compromised clients of the service in a time interval of the service {service_id} (attacks from the same origin IP are only considered once)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_COMPROMISED_CLIENTS,
                "service_ids": [],
            },
            "l3_unique_attackers": {
                "kpi_id": None,
                "description": "L3 - number of unique attackers of the service in a time interval of the service {service_id} (attacks from the same destination IP are only considered once)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACKERS,
        self.attackmitigator_client = l3_attackmitigatorClient()

        # Environment variables
        self.CLASSIFICATION_THRESHOLD = os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5)
        self.MONITORED_KPIS_TIME_INTERVAL_AGG = os.getenv("MONITORED_KPIS_TIME_INTERVAL_AGG", 5)
        # Constants
        self.NORMAL_CLASS = 0
        self.CRYPTO_CLASS = 1
        self.kpi_test = None
        self.time_interval_start = None
        self.time_interval_end = None

delacal's avatar
delacal committed
        # CAD evaluation tests
        self.cad_inference_times = []
        self.cad_num_inference_measurements = 100

        # AM evaluation tests
        self.am_notification_times = []

    Create a monitored KPI for a specific service and add it to the Monitoring Client
            + service_id: service ID where the KPI will be monitored
delacal's avatar
delacal committed
            + kpi_name: name of the KPI
            + kpi_description: description of the KPI
            + kpi_sample_type: KPI sample type of the KPI (it must be defined in the kpi_sample_types.proto file)
        -output: KPI identifier representing the KPI
        kpidescriptor = KpiDescriptor()
        kpidescriptor.kpi_description = kpi_description
        kpidescriptor.service_id.service_uuid.uuid = service_id.service_uuid.uuid
        kpidescriptor.kpi_sample_type = kpi_sample_type
        new_kpi = self.monitoring_client.SetKpi(kpidescriptor)
        LOGGER.info("Created KPI {}".format(kpi_name))
ldemarcosm's avatar
ldemarcosm committed

    """
    Create the monitored KPIs for a specific service, add them to the Monitoring Client and store their identifiers in the monitored_kpis dictionary
        -input:
            + service_id: service ID where the KPIs will be monitored
        -output: None
    """

    def create_kpis(self, service_id, device_id, endpoint_id):
        LOGGER.info("Creating KPIs for service {}".format(service_id))

        # for now, all the KPIs are created for all the services from which requests are received
        for kpi in self.monitored_kpis:
            # generate random slice_id
            slice_id = SliceId()
            slice_id.slice_uuid.uuid = str(uuid.uuid4())
            # generate random connection_id
            connection_id = ConnectionId()
            connection_id.connection_uuid.uuid = str(uuid.uuid4())
            created_kpi = self.create_kpi(
                service_id,
                self.monitored_kpis[kpi]["description"].format(service_id=service_id.service_uuid.uuid),
                self.monitored_kpis[kpi]["kpi_sample_type"],
            )
            self.monitored_kpis[kpi]["kpi_id"] = created_kpi.kpi_id
            self.monitored_kpis[kpi]["service_ids"].append(service_id.service_uuid.uuid)

        LOGGER.info("Created KPIs for service {}".format(service_id))

        self,
    ):
        monitor_inference_results = self.inference_results
        monitor_service_ids = self.service_ids

        LOGGER.debug("monitor_inference_results: {}".format(len(monitor_inference_results)))
        LOGGER.debug("monitor_service_ids: {}".format(len(monitor_service_ids)))

        time_interval = self.MONITORED_KPIS_TIME_INTERVAL_AGG

        # assign the timestamp of the first inference result to the time_interval_start
        if self.time_interval_start is None:
            self.time_interval_start = monitor_inference_results[0]["timestamp"]
            LOGGER.debug("self.time_interval_start: {}".format(self.time_interval_start))
            # self.time_interval_start = datetime.strptime(self.time_interval_start, "%Y-%m-%d %H:%M:%S.%f")

            # add time_interval to the current time to get the time interval end
            LOGGER.debug("time_interval: {}".format(time_interval))
            LOGGER.debug(timedelta(seconds=time_interval))
            self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)

        current_time = datetime.utcnow()

        LOGGER.debug("current_time: {}".format(current_time))

        if current_time >= self.time_interval_end:
            self.time_interval_start = self.time_interval_end
            self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)

        LOGGER.debug("time_interval_start: {}".format(self.time_interval_start))
        LOGGER.debug("time_interval_end: {}".format(self.time_interval_end))

        # delete all inference results that are older than the time_interval_start
        delete_inference_results = []

        for i in range(len(monitor_inference_results)):
            inference_result_timestamp = monitor_inference_results[i]["timestamp"]

            if inference_result_timestamp < self.time_interval_start:
                delete_inference_results.append(monitor_inference_results[i])

        if len(delete_inference_results) > 0:
            monitor_inference_results = [
                inference_result
                for inference_result in monitor_inference_results
                if inference_result not in delete_inference_results
            ]
            LOGGER.debug(f"Cleaned inference results. {len(delete_inference_results)} inference results deleted")

        # check if there is at least one inference result in monitor_inference_results in the current time_interval
        num_inference_results_in_time_interval = 0

        for i in range(len(monitor_inference_results)):
            inference_result_timestamp = monitor_inference_results[i]["timestamp"]

            if (
                inference_result_timestamp >= self.time_interval_start
                and inference_result_timestamp < self.time_interval_end
            ):
                num_inference_results_in_time_interval += 1

        if num_inference_results_in_time_interval > 0:
            non_empty_time_interval = True
            LOGGER.debug(
                f"Current time interval is not empty (there are {num_inference_results_in_time_interval} inference results"
            )
        else:
            non_empty_time_interval = False
            LOGGER.debug("Current time interval is empty. No KPIs will be reported.")

        if non_empty_time_interval:
            for service_id in monitor_service_ids:
                LOGGER.debug("service_id: {}".format(service_id))

                # L3 security status
                kpi_security_status = Kpi()
                kpi_security_status.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_security_status"]["kpi_id"])

                # get the output.tag of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                outputs_last_time_interval = []

                for i in range(len(monitor_inference_results)):
                    if (
                        monitor_inference_results[i]["timestamp"] >= self.time_interval_start
                        and monitor_inference_results[i]["timestamp"] < self.time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid in self.monitored_kpis["l3_security_status"]["service_ids"]
                    ):
                        outputs_last_time_interval.append(monitor_inference_results[i]["output"]["tag"])

                LOGGER.debug("outputs_last_time_interval: {}".format(outputs_last_time_interval))

                # check if all outputs are 0
                all_outputs_zero = True
                for output in outputs_last_time_interval:
                    if output != self.NORMAL_CLASS:
                        all_outputs_zero = False
                        break

                if all_outputs_zero:
                    kpi_security_status.kpi_value.int32Val = 0
                else:
                    kpi_security_status.kpi_value.int32Val = 1

                # L3 ML model confidence
                kpi_conf = Kpi()
                kpi_conf.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_ml_model_confidence"]["kpi_id"])

                # get the output.confidence of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                confidences_normal_last_time_interval = []
                confidences_crypto_last_time_interval = []

                for i in range(len(monitor_inference_results)):
                    LOGGER.debug("monitor_inference_results[i]: {}".format(monitor_inference_results[i]))

                    if (
                        monitor_inference_results[i]["timestamp"] >= self.time_interval_start
                        and monitor_inference_results[i]["timestamp"] < self.time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid
                        in self.monitored_kpis["l3_ml_model_confidence"]["service_ids"]
                    ):
                        if monitor_inference_results[i]["output"]["tag"] == self.NORMAL_CLASS:
                            confidences_normal_last_time_interval.append(
                                monitor_inference_results[i]["output"]["confidence"]
                            )
                        elif monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            confidences_crypto_last_time_interval.append(
                                monitor_inference_results[i]["output"]["confidence"]
                            )
                        else:
                            LOGGER.debug("Unknown tag: {}".format(monitor_inference_results[i]["output"]["tag"]))

                LOGGER.debug("confidences_normal_last_time_interval: {}".format(confidences_normal_last_time_interval))
                LOGGER.debug("confidences_crypto_last_time_interval: {}".format(confidences_crypto_last_time_interval))

                if kpi_security_status.kpi_value.int32Val == 0:
                    kpi_conf.kpi_value.floatVal = np.mean(confidences_normal_last_time_interval)
                else:
                    kpi_conf.kpi_value.floatVal = np.mean(confidences_crypto_last_time_interval)

                # L3 unique attack connections
                kpi_unique_attack_conns = Kpi()
                kpi_unique_attack_conns.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"])

                # get the number of unique attack connections (grouping by origin IP, origin port, destination IP, destination port) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                num_unique_attack_conns_last_time_interval = 0
                unique_attack_conns_last_time_interval = []

                for i in range(len(monitor_inference_results)):
                    if (
                        monitor_inference_results[i]["timestamp"] >= self.time_interval_start
                        and monitor_inference_results[i]["timestamp"] < self.time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid
                        in self.monitored_kpis["l3_unique_attack_conns"]["service_ids"]
                    ):
                        if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            current_attack_conn = {
                                "ip_o": monitor_inference_results[i]["output"]["ip_o"],
                                "port_o": monitor_inference_results[i]["output"]["port_o"],
                                "ip_d": monitor_inference_results[i]["output"]["ip_d"],
                                "port_d": monitor_inference_results[i]["output"]["port_d"],
                            }

                            is_unique_attack_conn = True

                            for j in range(len(unique_attack_conns_last_time_interval)):
                                if current_attack_conn == unique_attack_conns_last_time_interval[j]:
                                    is_unique_attack_conn = False

                            if is_unique_attack_conn:
                                num_unique_attack_conns_last_time_interval += 1
                                unique_attack_conns_last_time_interval.append(current_attack_conn)

                kpi_unique_attack_conns.kpi_value.int32Val = num_unique_attack_conns_last_time_interval

                # L3 unique compromised clients
                kpi_unique_compromised_clients = Kpi()
                kpi_unique_compromised_clients.kpi_id.kpi_id.CopyFrom(
                    self.monitored_kpis["l3_unique_compromised_clients"]["kpi_id"]
                )

                # get the number of unique compromised clients (grouping by origin IP) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                num_unique_compromised_clients_last_time_interval = 0
                unique_compromised_clients_last_time_interval = []

                for i in range(len(monitor_inference_results)):
                    if (
                        monitor_inference_results[i]["timestamp"] >= self.time_interval_start
                        and monitor_inference_results[i]["timestamp"] < self.time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid
                        in self.monitored_kpis["l3_unique_compromised_clients"]["service_ids"]
                    ):
                        if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            if (
                                monitor_inference_results[i]["output"]["ip_o"]
                                not in unique_compromised_clients_last_time_interval
                            ):
                                unique_compromised_clients_last_time_interval.append(
                                    monitor_inference_results[i]["output"]["ip_o"]
                                )
                                num_unique_compromised_clients_last_time_interval += 1

                kpi_unique_compromised_clients.kpi_value.int32Val = num_unique_compromised_clients_last_time_interval

                # L3 unique attackers
                kpi_unique_attackers = Kpi()
                kpi_unique_attackers.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attackers"]["kpi_id"])
                # get the number of unique attackers (grouping by destination ip) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                num_unique_attackers_last_time_interval = 0
                unique_attackers_last_time_interval = []
                for i in range(len(monitor_inference_results)):
                    if (
                        monitor_inference_results[i]["timestamp"] >= self.time_interval_start
                        and monitor_inference_results[i]["timestamp"] < self.time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid in self.monitored_kpis["l3_unique_attackers"]["service_ids"]
                    ):
                        if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            if (
                                monitor_inference_results[i]["output"]["ip_d"]
                                not in unique_attackers_last_time_interval
                            ):
                                unique_attackers_last_time_interval.append(
                                    monitor_inference_results[i]["output"]["ip_d"]
                                )
                                num_unique_attackers_last_time_interval += 1
                kpi_unique_attackers.kpi_value.int32Val = num_unique_attackers_last_time_interval
                timestamp = Timestamp()
                timestamp.timestamp = timestamp_utcnow_to_float()

                kpi_security_status.timestamp.CopyFrom(timestamp)
                kpi_conf.timestamp.CopyFrom(timestamp)
                kpi_unique_attack_conns.timestamp.CopyFrom(timestamp)
                kpi_unique_compromised_clients.timestamp.CopyFrom(timestamp)
                kpi_unique_attackers.timestamp.CopyFrom(timestamp)

                LOGGER.debug("Sending KPIs to monitoring server")

                LOGGER.debug("kpi_security_status: {}".format(kpi_security_status))
                LOGGER.debug("kpi_conf: {}".format(kpi_conf))
                LOGGER.debug("kpi_unique_attack_conns: {}".format(kpi_unique_attack_conns))
                LOGGER.debug("kpi_unique_compromised_clients: {}".format(kpi_unique_compromised_clients))
                LOGGER.debug("kpi_unique_attackers: {}".format(kpi_unique_attackers))

                try:
                    self.monitoring_client.IncludeKpi(kpi_security_status)
                    self.monitoring_client.IncludeKpi(kpi_conf)
                    self.monitoring_client.IncludeKpi(kpi_unique_attack_conns)
                    self.monitoring_client.IncludeKpi(kpi_unique_compromised_clients)
                    self.monitoring_client.IncludeKpi(kpi_unique_attackers)
                except Exception as e:
                    LOGGER.debug("Error sending KPIs to monitoring server: {}".format(e))

            LOGGER.debug("No KPIs sent to monitoring server")
    """
    Classify connection as standard traffic or cryptomining attack and return results
        -input: 
            + request: L3CentralizedattackdetectorMetrics object with connection features information
        -output: L3AttackmitigatorOutput object with information about the assigned class and prediction confidence
    """
ldemarcosm's avatar
ldemarcosm committed
    def make_inference(self, request):
ldemarcosm's avatar
ldemarcosm committed
                [
                    request.c_pkts_all,
                    request.c_ack_cnt,
                    request.c_bytes_uniq,
                    request.c_pkts_data,
                    request.c_bytes_all,
                    request.s_pkts_all,
                    request.s_ack_cnt,
                    request.s_bytes_uniq,
                    request.s_pkts_data,
                    request.s_bytes_all,
ldemarcosm's avatar
ldemarcosm committed
                ]
        )'''
        
        x_data = np.array(
            [
                [feature.feature for feature in request.features]
            ]
delacal's avatar
delacal committed
        # Print input data shape
        LOGGER.debug("x_data.shape: {}".format(x_data.shape))

        # Get batch size
        batch_size = x_data.shape[0]

        # Print batch size
        LOGGER.debug("batch_size: {}".format(batch_size))

        # TEST: Remove later
        test_batch_size = 1024
        # duplicate x_data to test_batch_size
        x_data = np.repeat(x_data, test_batch_size, axis=0)

        LOGGER.debug("x_data.shape: {}".format(x_data.shape))

        inference_time_start = time.perf_counter()

        # Perform inference
        predictions = self.model.run([self.prob_name], {self.input_name: x_data.astype(np.float32)})[0]
delacal's avatar
delacal committed
        inference_time_end = time.perf_counter()

        # Measure inference time
        inference_time = inference_time_end - inference_time_start
        self.cad_inference_times.append(inference_time)

        if len(self.cad_inference_times) > self.cad_num_inference_measurements:
            inference_times_np_array = np.array(self.cad_inference_times)
            np.save(f"inference_times_{test_batch_size}.npy", inference_times_np_array)

            avg_inference_time = np.mean(inference_times_np_array)
            max_inference_time = np.max(inference_times_np_array)
            min_inference_time = np.min(inference_times_np_array)
            std_inference_time = np.std(inference_times_np_array)
            median_inference_time = np.median(inference_times_np_array)

            LOGGER.debug("Average inference time: {}".format(avg_inference_time))
            LOGGER.debug("Max inference time: {}".format(max_inference_time))
            LOGGER.debug("Min inference time: {}".format(min_inference_time))
            LOGGER.debug("Standard deviation inference time: {}".format(std_inference_time))
            LOGGER.debug("Median inference time: {}".format(median_inference_time))

            with open(f"inference_times_stats_{batch_size}.txt", "w") as f:
                f.write("Average inference time: {}\n".format(avg_inference_time))
                f.write("Max inference time: {}\n".format(max_inference_time))
                f.write("Min inference time: {}\n".format(min_inference_time))
                f.write("Standard deviation inference time: {}\n".format(std_inference_time))
                f.write("Median inference time: {}\n".format(median_inference_time))

        # Gather the predicted class, the probability of that class and other relevant information required to block the attack
ldemarcosm's avatar
ldemarcosm committed
        output_message = {
            "confidence": None,
            "timestamp": datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
            "ip_o": request.connection_metadata.ip_o,
            "ip_d": request.connection_metadata.ip_d,
ldemarcosm's avatar
ldemarcosm committed
            "tag_name": None,
            "tag": None,
            "flow_id": request.connection_metadata.flow_id,
            "protocol": request.connection_metadata.protocol,
            "port_o": request.connection_metadata.port_o,
            "port_d": request.connection_metadata.port_d,
ldemarcosm's avatar
ldemarcosm committed
            "ml_id": "RandomForest",
            "service_id": request.connection_metadata.service_id,
            "endpoint_id": request.connection_metadata.endpoint_id,
            "time_start": request.connection_metadata.time_start,
            "time_end": request.connection_metadata.time_end,
ldemarcosm's avatar
ldemarcosm committed
        }
        if predictions[0][1] >= self.CLASSIFICATION_THRESHOLD:
ldemarcosm's avatar
ldemarcosm committed
            output_message["confidence"] = predictions[0][1]
            output_message["tag_name"] = "Crypto"
            output_message["tag"] = self.CRYPTO_CLASS
ldemarcosm's avatar
ldemarcosm committed
        else:
            output_message["confidence"] = predictions[0][0]
            output_message["tag_name"] = "Normal"
            output_message["tag"] = self.NORMAL_CLASS
ldemarcosm's avatar
ldemarcosm committed

        return output_message
ldemarcosm's avatar
ldemarcosm committed

    """
    Receive features from Attack Mitigator, predict attack and communicate with Attack Mitigator
        -input: 
            + request: L3CentralizedattackdetectorMetrics object with connection features information
        -output: Empty object with a message about the execution of the function
    """
    def SendInput(self, request, context):
        # Perform inference with the data sent in the request
        logging.info("Performing inference...")
        cryptomining_detector_output = self.make_inference(request)
        logging.info("Inference performed correctly")
        self.inference_results.append({"output": cryptomining_detector_output, "timestamp": datetime.now()})
        service_id = request.connection_metadata.service_id
        device_id = request.connection_metadata.endpoint_id.device_id
        endpoint_id = request.connection_metadata.endpoint_id
        # Check if a request of a new service has been received and, if so, create the monitored KPIs for that service
        if service_id not in self.service_ids:
            self.create_kpis(service_id, device_id, endpoint_id)
            self.service_ids.append(service_id)
delacal's avatar
delacal committed
        LOGGER.debug("cryptomining_detector_output: {}".format(cryptomining_detector_output))

        # Only notify Attack Mitigator when a cryptomining connection has been detected
        if cryptomining_detector_output["tag_name"] == "Crypto":
delacal's avatar
delacal committed
            notification_time_start = time.perf_counter()

            logging.info("Crypto attack detected")

            # Notify the Attack Mitigator component about the attack
            logging.info(
                "Notifying the Attack Mitigator component about the attack in order to block the connection..."
            )

                logging.info("Sending the connection information to the Attack Mitigator component...")
                message = L3AttackmitigatorOutput(**cryptomining_detector_output)
                response = self.attackmitigator_client.SendOutput(message)
delacal's avatar
delacal committed
                notification_time_end = time.perf_counter()

                self.am_notification_times.append(notification_time_end - notification_time_start)

                LOGGER.debug(f"am_notification_times length: {len(self.am_notification_times)}")

                if len(self.am_notification_times) > 100:
                    am_notification_times_np_array = np.array(self.am_notification_times)
                    np.save("am_notification_times.npy", am_notification_times_np_array)

                    avg_notification_time = np.mean(am_notification_times_np_array)
                    max_notification_time = np.max(am_notification_times_np_array)
                    min_notification_time = np.min(am_notification_times_np_array)
                    std_notification_time = np.std(am_notification_times_np_array)
                    median_notification_time = np.median(am_notification_times_np_array)

                    LOGGER.debug("Average notification time: {}".format(avg_notification_time))
                    LOGGER.debug("Max notification time: {}".format(max_notification_time))
                    LOGGER.debug("Min notification time: {}".format(min_notification_time))
                    LOGGER.debug("Std notification time: {}".format(std_notification_time))
                    LOGGER.debug("Median notification time: {}".format(median_notification_time))

                    with open("am_notification_times_stats.txt", "w") as f:
                        f.write("Average notification time: {}\n".format(avg_notification_time))
                        f.write("Max notification time: {}\n".format(max_notification_time))
                        f.write("Min notification time: {}\n".format(min_notification_time))
                        f.write("Std notification time: {}\n".format(std_notification_time))
                        f.write("Median notification time: {}\n".format(median_notification_time))

                # logging.info("Attack Mitigator notified and received response: ", response.message)  # FIX No message received
                logging.info("Attack Mitigator notified")

                return Empty(message="OK, information received and mitigator notified abou the attack")
            except Exception as e:
                logging.error("Error notifying the Attack Mitigator component about the attack: ", e)
                logging.error("Couldn't find l3_attackmitigator")

                return Empty(message="Attack Mitigator not found")
            logging.info("No attack detected")

            return Empty(message="Ok, information received (no attack detected)")