Newer
Older
# Copyright 2021-2023 H2020 TeraFlow (https://www.teraflow-h2020.eu/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from datetime import datetime
delacal
committed
from datetime import timedelta
from common.proto.l3_centralizedattackdetector_pb2 import Empty
from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer
from common.proto.l3_attackmitigator_pb2 import L3AttackmitigatorOutput
from common.proto.monitoring_pb2 import KpiDescriptor
from common.proto.kpi_sample_types_pb2 import KpiSampleType
from monitoring.client.MonitoringClient import MonitoringClient
from common.proto.monitoring_pb2 import Kpi
delacal
committed
delacal
committed
from common.tools.timestamp.Converters import timestamp_utcnow_to_float
from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient
delacal
committed
import uuid
delacal
committed
current_dir = os.path.dirname(os.path.abspath(__file__))
MODEL_FILE = os.path.join(current_dir, "ml_model/crypto_5g_rf_spider_features.onnx")
class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer):
"""
Initialize variables, prediction model and clients of components used by CAD
LOGGER.info("Creating Centralized Attack Detector Service")
onnx_model = ox.load_model(MODEL_FILE)
meta = onnx_model.metadata_props.add()
meta.key = "key"
meta.value = "value"
LOGGER.debug(onnx_model.metadata_props[0])
self.inference_values = []
self.inference_results = []
self.model = rt.InferenceSession(MODEL_FILE)
'''self.model._model_meta = metadata_proto
meta = self.model.get_modelmeta()
LOGGER.debug(meta.description)
time.sleep(10)'''
self.input_name = self.model.get_inputs()[0].name
self.label_name = self.model.get_outputs()[0].name
self.prob_name = self.model.get_outputs()[1].name
self.monitoring_client = MonitoringClient()
self.service_ids = []
self.monitored_kpis = {
"l3_security_status": {
"kpi_id": None,
"description": "L3 - Confidence of the cryptomining detector in the security status in the last time interval of the service {service_id}",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_SECURITY_STATUS_CRYPTO,
"service_ids": [],
},
"l3_ml_model_confidence": {
"kpi_id": None,
"description": "L3 - Security status of the service in a time interval of the service {service_id} (“0” if no attack has been detected on the service and “1” if a cryptomining attack has been detected)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_ML_CONFIDENCE,
"service_ids": [],
},
"l3_unique_attack_conns": {
"kpi_id": None,
"description": "L3 - Number of attack connections detected in a time interval of the service {service_id} (attacks of the same connection [origin IP, origin port, destination IP and destination port] are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACK_CONNS,
"service_ids": [],
},
"l3_unique_compromised_clients": {
"kpi_id": None,
"description": "L3 - Number of unique compromised clients of the service in a time interval of the service {service_id} (attacks from the same origin IP are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_COMPROMISED_CLIENTS,
"service_ids": [],
},
"l3_unique_attackers": {
"kpi_id": None,
"description": "L3 - number of unique attackers of the service in a time interval of the service {service_id} (attacks from the same destination IP are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACKERS,
"service_ids": [],
},
}
self.attackmitigator_client = l3_attackmitigatorClient()
# Environment variables
self.CLASSIFICATION_THRESHOLD = os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5)
self.MONITORED_KPIS_TIME_INTERVAL_AGG = os.getenv("MONITORED_KPIS_TIME_INTERVAL_AGG", 5)
# Constants
self.NORMAL_CLASS = 0
self.CRYPTO_CLASS = 1
self.kpi_test = None
self.time_interval_start = None
self.time_interval_end = None
# CAD evaluation tests
self.cad_inference_times = []
self.cad_num_inference_measurements = 100
# AM evaluation tests
self.am_notification_times = []
"""
Create a monitored KPI for a specific service and add it to the Monitoring Client
-input:
+ service_id: service ID where the KPI will be monitored
delacal
committed
+ kpi_description: description of the KPI
+ kpi_sample_type: KPI sample type of the KPI (it must be defined in the kpi_sample_types.proto file)
-output: KPI identifier representing the KPI
"""
delacal
committed
def create_kpi(
delacal
committed
self,
service_id,
kpi_name,
kpi_description,
kpi_sample_type,
delacal
committed
):
delacal
committed
kpidescriptor = KpiDescriptor()
kpidescriptor.kpi_description = kpi_description
kpidescriptor.service_id.service_uuid.uuid = service_id.service_uuid.uuid
kpidescriptor.kpi_sample_type = kpi_sample_type
delacal
committed
new_kpi = self.monitoring_client.SetKpi(kpidescriptor)
delacal
committed
LOGGER.info("Created KPI {}".format(kpi_name))
return new_kpi
"""
Create the monitored KPIs for a specific service, add them to the Monitoring Client and store their identifiers in the monitored_kpis dictionary
-input:
+ service_id: service ID where the KPIs will be monitored
-output: None
"""
delacal
committed
def create_kpis(self, service_id, device_id, endpoint_id):
delacal
committed
LOGGER.info("Creating KPIs for service {}".format(service_id))
# for now, all the KPIs are created for all the services from which requests are received
for kpi in self.monitored_kpis:
# generate random slice_id
slice_id = SliceId()
slice_id.slice_uuid.uuid = str(uuid.uuid4())
delacal
committed
# generate random connection_id
connection_id = ConnectionId()
connection_id.connection_uuid.uuid = str(uuid.uuid4())
delacal
committed
created_kpi = self.create_kpi(
service_id,
delacal
committed
kpi,
delacal
committed
self.monitored_kpis[kpi]["description"].format(service_id=service_id.service_uuid.uuid),
self.monitored_kpis[kpi]["kpi_sample_type"],
)
self.monitored_kpis[kpi]["kpi_id"] = created_kpi.kpi_id
self.monitored_kpis[kpi]["service_ids"].append(service_id.service_uuid.uuid)
LOGGER.info("Created KPIs for service {}".format(service_id))
def monitor_kpis(
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
self,
):
monitor_inference_results = self.inference_results
monitor_service_ids = self.service_ids
LOGGER.debug("monitor_inference_results: {}".format(len(monitor_inference_results)))
LOGGER.debug("monitor_service_ids: {}".format(len(monitor_service_ids)))
time_interval = self.MONITORED_KPIS_TIME_INTERVAL_AGG
# assign the timestamp of the first inference result to the time_interval_start
if self.time_interval_start is None:
self.time_interval_start = monitor_inference_results[0]["timestamp"]
LOGGER.debug("self.time_interval_start: {}".format(self.time_interval_start))
# self.time_interval_start = datetime.strptime(self.time_interval_start, "%Y-%m-%d %H:%M:%S.%f")
# add time_interval to the current time to get the time interval end
LOGGER.debug("time_interval: {}".format(time_interval))
LOGGER.debug(timedelta(seconds=time_interval))
self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)
current_time = datetime.utcnow()
LOGGER.debug("current_time: {}".format(current_time))
if current_time >= self.time_interval_end:
self.time_interval_start = self.time_interval_end
self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)
LOGGER.debug("time_interval_start: {}".format(self.time_interval_start))
LOGGER.debug("time_interval_end: {}".format(self.time_interval_end))
# delete all inference results that are older than the time_interval_start
delete_inference_results = []
for i in range(len(monitor_inference_results)):
inference_result_timestamp = monitor_inference_results[i]["timestamp"]
if inference_result_timestamp < self.time_interval_start:
delete_inference_results.append(monitor_inference_results[i])
if len(delete_inference_results) > 0:
monitor_inference_results = [
inference_result
for inference_result in monitor_inference_results
if inference_result not in delete_inference_results
]
LOGGER.debug(f"Cleaned inference results. {len(delete_inference_results)} inference results deleted")
# check if there is at least one inference result in monitor_inference_results in the current time_interval
num_inference_results_in_time_interval = 0
for i in range(len(monitor_inference_results)):
inference_result_timestamp = monitor_inference_results[i]["timestamp"]
if (
inference_result_timestamp >= self.time_interval_start
and inference_result_timestamp < self.time_interval_end
):
num_inference_results_in_time_interval += 1
if num_inference_results_in_time_interval > 0:
non_empty_time_interval = True
LOGGER.debug(
f"Current time interval is not empty (there are {num_inference_results_in_time_interval} inference results"
)
else:
non_empty_time_interval = False
LOGGER.debug("Current time interval is empty. No KPIs will be reported.")
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
if non_empty_time_interval:
for service_id in monitor_service_ids:
LOGGER.debug("service_id: {}".format(service_id))
# L3 security status
kpi_security_status = Kpi()
kpi_security_status.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_security_status"]["kpi_id"])
# get the output.tag of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
outputs_last_time_interval = []
for i in range(len(monitor_inference_results)):
if (
monitor_inference_results[i]["timestamp"] >= self.time_interval_start
and monitor_inference_results[i]["timestamp"] < self.time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid in self.monitored_kpis["l3_security_status"]["service_ids"]
):
outputs_last_time_interval.append(monitor_inference_results[i]["output"]["tag"])
LOGGER.debug("outputs_last_time_interval: {}".format(outputs_last_time_interval))
# check if all outputs are 0
all_outputs_zero = True
for output in outputs_last_time_interval:
if output != self.NORMAL_CLASS:
all_outputs_zero = False
break
if all_outputs_zero:
kpi_security_status.kpi_value.int32Val = 0
else:
kpi_security_status.kpi_value.int32Val = 1
# L3 ML model confidence
kpi_conf = Kpi()
kpi_conf.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_ml_model_confidence"]["kpi_id"])
# get the output.confidence of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
confidences_normal_last_time_interval = []
confidences_crypto_last_time_interval = []
for i in range(len(monitor_inference_results)):
LOGGER.debug("monitor_inference_results[i]: {}".format(monitor_inference_results[i]))
if (
monitor_inference_results[i]["timestamp"] >= self.time_interval_start
and monitor_inference_results[i]["timestamp"] < self.time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid
in self.monitored_kpis["l3_ml_model_confidence"]["service_ids"]
):
if monitor_inference_results[i]["output"]["tag"] == self.NORMAL_CLASS:
confidences_normal_last_time_interval.append(
monitor_inference_results[i]["output"]["confidence"]
)
elif monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
confidences_crypto_last_time_interval.append(
monitor_inference_results[i]["output"]["confidence"]
)
else:
LOGGER.debug("Unknown tag: {}".format(monitor_inference_results[i]["output"]["tag"]))
LOGGER.debug("confidences_normal_last_time_interval: {}".format(confidences_normal_last_time_interval))
LOGGER.debug("confidences_crypto_last_time_interval: {}".format(confidences_crypto_last_time_interval))
if kpi_security_status.kpi_value.int32Val == 0:
kpi_conf.kpi_value.floatVal = np.mean(confidences_normal_last_time_interval)
else:
kpi_conf.kpi_value.floatVal = np.mean(confidences_crypto_last_time_interval)
# L3 unique attack connections
kpi_unique_attack_conns = Kpi()
kpi_unique_attack_conns.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"])
# get the number of unique attack connections (grouping by origin IP, origin port, destination IP, destination port) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
num_unique_attack_conns_last_time_interval = 0
unique_attack_conns_last_time_interval = []
for i in range(len(monitor_inference_results)):
if (
monitor_inference_results[i]["timestamp"] >= self.time_interval_start
and monitor_inference_results[i]["timestamp"] < self.time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid
in self.monitored_kpis["l3_unique_attack_conns"]["service_ids"]
):
if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
current_attack_conn = {
"ip_o": monitor_inference_results[i]["output"]["ip_o"],
"port_o": monitor_inference_results[i]["output"]["port_o"],
"ip_d": monitor_inference_results[i]["output"]["ip_d"],
"port_d": monitor_inference_results[i]["output"]["port_d"],
}
is_unique_attack_conn = True
for j in range(len(unique_attack_conns_last_time_interval)):
if current_attack_conn == unique_attack_conns_last_time_interval[j]:
is_unique_attack_conn = False
if is_unique_attack_conn:
num_unique_attack_conns_last_time_interval += 1
unique_attack_conns_last_time_interval.append(current_attack_conn)
kpi_unique_attack_conns.kpi_value.int32Val = num_unique_attack_conns_last_time_interval
# L3 unique compromised clients
kpi_unique_compromised_clients = Kpi()
kpi_unique_compromised_clients.kpi_id.kpi_id.CopyFrom(
self.monitored_kpis["l3_unique_compromised_clients"]["kpi_id"]
)
# get the number of unique compromised clients (grouping by origin IP) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
num_unique_compromised_clients_last_time_interval = 0
unique_compromised_clients_last_time_interval = []
for i in range(len(monitor_inference_results)):
if (
monitor_inference_results[i]["timestamp"] >= self.time_interval_start
and monitor_inference_results[i]["timestamp"] < self.time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid
in self.monitored_kpis["l3_unique_compromised_clients"]["service_ids"]
):
if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
if (
monitor_inference_results[i]["output"]["ip_o"]
not in unique_compromised_clients_last_time_interval
):
unique_compromised_clients_last_time_interval.append(
monitor_inference_results[i]["output"]["ip_o"]
)
num_unique_compromised_clients_last_time_interval += 1
kpi_unique_compromised_clients.kpi_value.int32Val = num_unique_compromised_clients_last_time_interval
# L3 unique attackers
kpi_unique_attackers = Kpi()
kpi_unique_attackers.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attackers"]["kpi_id"])
delacal
committed
# get the number of unique attackers (grouping by destination ip) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
num_unique_attackers_last_time_interval = 0
unique_attackers_last_time_interval = []
delacal
committed
for i in range(len(monitor_inference_results)):
if (
monitor_inference_results[i]["timestamp"] >= self.time_interval_start
and monitor_inference_results[i]["timestamp"] < self.time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid in self.monitored_kpis["l3_unique_attackers"]["service_ids"]
):
if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
if (
monitor_inference_results[i]["output"]["ip_d"]
not in unique_attackers_last_time_interval
):
unique_attackers_last_time_interval.append(
monitor_inference_results[i]["output"]["ip_d"]
)
num_unique_attackers_last_time_interval += 1
delacal
committed
kpi_unique_attackers.kpi_value.int32Val = num_unique_attackers_last_time_interval
delacal
committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
timestamp = Timestamp()
timestamp.timestamp = timestamp_utcnow_to_float()
kpi_security_status.timestamp.CopyFrom(timestamp)
kpi_conf.timestamp.CopyFrom(timestamp)
kpi_unique_attack_conns.timestamp.CopyFrom(timestamp)
kpi_unique_compromised_clients.timestamp.CopyFrom(timestamp)
kpi_unique_attackers.timestamp.CopyFrom(timestamp)
LOGGER.debug("Sending KPIs to monitoring server")
LOGGER.debug("kpi_security_status: {}".format(kpi_security_status))
LOGGER.debug("kpi_conf: {}".format(kpi_conf))
LOGGER.debug("kpi_unique_attack_conns: {}".format(kpi_unique_attack_conns))
LOGGER.debug("kpi_unique_compromised_clients: {}".format(kpi_unique_compromised_clients))
LOGGER.debug("kpi_unique_attackers: {}".format(kpi_unique_attackers))
try:
self.monitoring_client.IncludeKpi(kpi_security_status)
self.monitoring_client.IncludeKpi(kpi_conf)
self.monitoring_client.IncludeKpi(kpi_unique_attack_conns)
self.monitoring_client.IncludeKpi(kpi_unique_compromised_clients)
self.monitoring_client.IncludeKpi(kpi_unique_attackers)
except Exception as e:
LOGGER.debug("Error sending KPIs to monitoring server: {}".format(e))
delacal
committed
LOGGER.debug("KPIs sent to monitoring server")
else:
LOGGER.debug("No KPIs sent to monitoring server")
"""
Classify connection as standard traffic or cryptomining attack and return results
-input:
+ request: L3CentralizedattackdetectorMetrics object with connection features information
-output: L3AttackmitigatorOutput object with information about the assigned class and prediction confidence
"""
'''x_data = np.array(
request.c_pkts_all,
request.c_ack_cnt,
request.c_bytes_uniq,
request.c_pkts_data,
request.c_bytes_all,
request.s_pkts_all,
request.s_ack_cnt,
request.s_bytes_uniq,
request.s_pkts_data,
request.s_bytes_all,
)'''
x_data = np.array(
[
[feature.feature for feature in request.features]
]
# Print input data shape
LOGGER.debug("x_data.shape: {}".format(x_data.shape))
# Get batch size
batch_size = x_data.shape[0]
# Print batch size
LOGGER.debug("batch_size: {}".format(batch_size))
# TEST: Remove later
test_batch_size = 1024
# duplicate x_data to test_batch_size
x_data = np.repeat(x_data, test_batch_size, axis=0)
LOGGER.debug("x_data.shape: {}".format(x_data.shape))
inference_time_start = time.perf_counter()
# Perform inference
predictions = self.model.run([self.prob_name], {self.input_name: x_data.astype(np.float32)})[0]
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
inference_time_end = time.perf_counter()
# Measure inference time
inference_time = inference_time_end - inference_time_start
self.cad_inference_times.append(inference_time)
if len(self.cad_inference_times) > self.cad_num_inference_measurements:
inference_times_np_array = np.array(self.cad_inference_times)
np.save(f"inference_times_{test_batch_size}.npy", inference_times_np_array)
avg_inference_time = np.mean(inference_times_np_array)
max_inference_time = np.max(inference_times_np_array)
min_inference_time = np.min(inference_times_np_array)
std_inference_time = np.std(inference_times_np_array)
median_inference_time = np.median(inference_times_np_array)
LOGGER.debug("Average inference time: {}".format(avg_inference_time))
LOGGER.debug("Max inference time: {}".format(max_inference_time))
LOGGER.debug("Min inference time: {}".format(min_inference_time))
LOGGER.debug("Standard deviation inference time: {}".format(std_inference_time))
LOGGER.debug("Median inference time: {}".format(median_inference_time))
with open(f"inference_times_stats_{batch_size}.txt", "w") as f:
f.write("Average inference time: {}\n".format(avg_inference_time))
f.write("Max inference time: {}\n".format(max_inference_time))
f.write("Min inference time: {}\n".format(min_inference_time))
f.write("Standard deviation inference time: {}\n".format(std_inference_time))
f.write("Median inference time: {}\n".format(median_inference_time))
# Gather the predicted class, the probability of that class and other relevant information required to block the attack
output_message = {
"confidence": None,
"timestamp": datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
"ip_o": request.connection_metadata.ip_o,
"ip_d": request.connection_metadata.ip_d,
"flow_id": request.connection_metadata.flow_id,
"protocol": request.connection_metadata.protocol,
"port_o": request.connection_metadata.port_o,
"port_d": request.connection_metadata.port_d,
"service_id": request.connection_metadata.service_id,
"endpoint_id": request.connection_metadata.endpoint_id,
"time_start": request.connection_metadata.time_start,
"time_end": request.connection_metadata.time_end,
if predictions[0][1] >= self.CLASSIFICATION_THRESHOLD:
output_message["confidence"] = predictions[0][1]
output_message["tag_name"] = "Crypto"
output_message["tag"] = self.CRYPTO_CLASS
else:
output_message["confidence"] = predictions[0][0]
output_message["tag_name"] = "Normal"
output_message["tag"] = self.NORMAL_CLASS
"""
Receive features from Attack Mitigator, predict attack and communicate with Attack Mitigator
-input:
+ request: L3CentralizedattackdetectorMetrics object with connection features information
-output: Empty object with a message about the execution of the function
"""
def SendInput(self, request, context):
# Perform inference with the data sent in the request
logging.info("Performing inference...")
cryptomining_detector_output = self.make_inference(request)
logging.info("Inference performed correctly")
self.inference_results.append({"output": cryptomining_detector_output, "timestamp": datetime.now()})
service_id = request.connection_metadata.service_id
device_id = request.connection_metadata.endpoint_id.device_id
endpoint_id = request.connection_metadata.endpoint_id
# Check if a request of a new service has been received and, if so, create the monitored KPIs for that service
if service_id not in self.service_ids:
delacal
committed
self.create_kpis(service_id, device_id, endpoint_id)
self.service_ids.append(service_id)
self.monitor_kpis()
LOGGER.debug("cryptomining_detector_output: {}".format(cryptomining_detector_output))
# Only notify Attack Mitigator when a cryptomining connection has been detected
if cryptomining_detector_output["tag_name"] == "Crypto":
logging.info("Crypto attack detected")
# Notify the Attack Mitigator component about the attack
logging.info(
"Notifying the Attack Mitigator component about the attack in order to block the connection..."
)
delacal
committed
logging.info("Sending the connection information to the Attack Mitigator component...")
message = L3AttackmitigatorOutput(**cryptomining_detector_output)
response = self.attackmitigator_client.SendOutput(message)
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
notification_time_end = time.perf_counter()
self.am_notification_times.append(notification_time_end - notification_time_start)
LOGGER.debug(f"am_notification_times length: {len(self.am_notification_times)}")
if len(self.am_notification_times) > 100:
am_notification_times_np_array = np.array(self.am_notification_times)
np.save("am_notification_times.npy", am_notification_times_np_array)
avg_notification_time = np.mean(am_notification_times_np_array)
max_notification_time = np.max(am_notification_times_np_array)
min_notification_time = np.min(am_notification_times_np_array)
std_notification_time = np.std(am_notification_times_np_array)
median_notification_time = np.median(am_notification_times_np_array)
LOGGER.debug("Average notification time: {}".format(avg_notification_time))
LOGGER.debug("Max notification time: {}".format(max_notification_time))
LOGGER.debug("Min notification time: {}".format(min_notification_time))
LOGGER.debug("Std notification time: {}".format(std_notification_time))
LOGGER.debug("Median notification time: {}".format(median_notification_time))
with open("am_notification_times_stats.txt", "w") as f:
f.write("Average notification time: {}\n".format(avg_notification_time))
f.write("Max notification time: {}\n".format(max_notification_time))
f.write("Min notification time: {}\n".format(min_notification_time))
f.write("Std notification time: {}\n".format(std_notification_time))
f.write("Median notification time: {}\n".format(median_notification_time))
delacal
committed
# logging.info("Attack Mitigator notified and received response: ", response.message) # FIX No message received
logging.info("Attack Mitigator notified")
return Empty(message="OK, information received and mitigator notified abou the attack")
except Exception as e:
logging.error("Error notifying the Attack Mitigator component about the attack: ", e)
logging.error("Couldn't find l3_attackmitigator")
return Empty(message="Attack Mitigator not found")
logging.info("No attack detected")
return Empty(message="Ok, information received (no attack detected)")