Newer
Older
# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sqlalchemy_utils
from sqlalchemy.orm import sessionmaker
from kpi_manager.database.KpiEngine import KpiEngine
from kpi_manager.database.KpiModel import Kpi as KpiModel
AlreadyExistsException, OperationFailedException , NotFoundException)
LOGGER = logging.getLogger(__name__)
def __init__(self):
self.db_engine = KpiEngine.get_engine()
if self.db_engine is None:
LOGGER.error('Unable to get SQLAlchemy DB Engine...')
return False
self.db_name = DB_NAME
self.Session = sessionmaker(bind=self.db_engine)
def create_database(self) -> None:
if not sqlalchemy_utils.database_exists(self.db_engine.url):
sqlalchemy_utils.create_database(self.db_engine.url)
LOGGER.debug("Database created. {:}".format(self.db_engine.url))
def drop_database(self) -> None:
if sqlalchemy_utils.database_exists(self.db_engine.url):
sqlalchemy_utils.drop_database(self.db_engine.url)
def create_tables(self):
# TODO: use "get_tables(declatrative class obj)" method of "sqlalchemy_utils" to verify tables.
KpiModel.metadata.create_all(self.db_engine) # type: ignore
LOGGER.debug("Tables created in the DB Name: {:}".format(self.db_name))
except Exception as e:
LOGGER.debug("Tables cannot be created in the kpi database. {:s}".format(str(e)))
raise OperationFailedException ("Tables can't be created", extra_details=["unable to create table {:}".format(e)])
def verify_tables(self):
try:
with self.db_engine.connect() as connection:
result = connection.execute("SHOW TABLES;")
tables = result.fetchall() # type: ignore
LOGGER.debug("Tables verified: {:}".format(tables))
except Exception as e:
LOGGER.debug("Unable to fetch Table names. {:s}".format(str(e)))
def add_row_to_db(self, row):
session = self.Session()
try:
session.add(row)
session.commit()
LOGGER.debug(f"Row inserted into {row.__class__.__name__} table.")
return True
except Exception as e:
session.rollback()
if "psycopg2.errors.UniqueViolation" in str(e):
LOGGER.error(f"Unique key voilation: {row.__class__.__name__} table. {str(e)}")
raise AlreadyExistsException(row.__class__.__name__, row, extra_details=["Unique key voilation: {:}".format(e)] )
else:
LOGGER.error(f"Failed to insert new row into {row.__class__.__name__} table. {str(e)}")
raise OperationFailedException ("Deletion by column id", extra_details=["unable to delete row {:}".format(e)])
finally:
session.close()
def search_db_row_by_id(self, model, col_name, id_to_search):
session = self.Session()
try:
entity = session.query(model).filter_by(**{col_name: id_to_search}).first()
if entity:
# LOGGER.debug(f"{model.__name__} ID found: {str(entity)}")
return entity
else:
LOGGER.debug(f"{model.__name__} ID not found, No matching row: {str(id_to_search)}")
print("{:} ID not found, No matching row: {:}".format(model.__name__, id_to_search))
return None
except Exception as e:
LOGGER.debug(f"Failed to retrieve {model.__name__} ID. {str(e)}")
raise OperationFailedException ("search by column id", extra_details=["unable to search row {:}".format(e)])
finally:
session.close()
def delete_db_row_by_id(self, model, col_name, id_to_search):
session = self.Session()
try:
record = session.query(model).filter_by(**{col_name: id_to_search}).first()
if record:
session.delete(record)
session.commit()
LOGGER.debug("Deleted %s with %s: %s", model.__name__, col_name, id_to_search)
LOGGER.debug("%s with %s %s not found", model.__name__, col_name, id_to_search)
except Exception as e:
session.rollback()
LOGGER.error("Error deleting %s with %s %s: %s", model.__name__, col_name, id_to_search, e)
raise OperationFailedException ("Deletion by column id", extra_details=["unable to delete row {:}".format(e)])
finally:
session.close()
def select_with_filter(self, model, filter_object):
session = self.Session()
try:
query = session.query(KpiModel)
# Apply filters based on the filter_object
if filter_object.kpi_id:
query = query.filter(KpiModel.kpi_id.in_([k.kpi_id.uuid for k in filter_object.kpi_id]))
if filter_object.kpi_sample_type:
query = query.filter(KpiModel.kpi_sample_type.in_(filter_object.kpi_sample_type))
if filter_object.device_id:
query = query.filter(KpiModel.device_id.in_([d.device_uuid.uuid for d in filter_object.device_id]))
if filter_object.endpoint_id:
query = query.filter(KpiModel.endpoint_id.in_([e.endpoint_uuid.uuid for e in filter_object.endpoint_id]))
if filter_object.service_id:
query = query.filter(KpiModel.service_id.in_([s.service_uuid.uuid for s in filter_object.service_id]))
if filter_object.slice_id:
query = query.filter(KpiModel.slice_id.in_([s.slice_uuid.uuid for s in filter_object.slice_id]))
if filter_object.connection_id:
query = query.filter(KpiModel.connection_id.in_([c.connection_uuid.uuid for c in filter_object.connection_id]))
if filter_object.link_id:
query = query.filter(KpiModel.link_id.in_([l.link_uuid.uuid for l in filter_object.link_id]))
result = query.all()
if result:
LOGGER.debug(f"Fetched filtered rows from {model.__name__} table with filters: {filter_object}") # - Results: {result}
LOGGER.debug(f"No matching row found in {model.__name__} table with filters: {filter_object}")
return result
except Exception as e:
LOGGER.error(f"Error fetching filtered rows from {model.__name__} table with filters {filter_object} ::: {e}")
raise OperationFailedException ("Select by filter", extra_details=["unable to apply the filter {:}".format(e)])
finally: