Skip to content
Snippets Groups Projects
TelemetryFrontendServiceServicerImpl.py 7.69 KiB
Newer Older
  • Learn to ignore specific revisions
  • # Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
    
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #      http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    
    # limitations under the License.
    
    
    Waleed Akbar's avatar
    Waleed Akbar committed
    import ast
    import threading
    
    from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method
    from common.tools.kafka.Variables import KafkaConfig, KafkaTopic
    
    Waleed Akbar's avatar
    Waleed Akbar committed
    from confluent_kafka import Consumer as KafkaConsumer
    
    from confluent_kafka import Producer as KafkaProducer
    
    Waleed Akbar's avatar
    Waleed Akbar committed
    from confluent_kafka import KafkaError
    
    
    from common.proto.context_pb2 import Empty
    
    
    from common.proto.telemetry_frontend_pb2 import CollectorId, Collector, CollectorFilter, CollectorList
    
    from common.proto.telemetry_frontend_pb2_grpc import TelemetryFrontendServiceServicer
    
    from telemetry.database.TelemetryModel import Collector as CollectorModel
    
    from telemetry.database.Telemetry_DB import TelemetryDB
    
    
    METRICS_POOL      = MetricsPool('TelemetryFrontend', 'NBIgRPC')
    
    
    class TelemetryFrontendServiceServicerImpl(TelemetryFrontendServiceServicer):
    
        def __init__(self):
    
            LOGGER.info('Init TelemetryFrontendService')
    
            self.DBobj = TelemetryDB()
            self.kafka_producer = KafkaProducer({'bootstrap.servers' : KafkaConfig.SERVER_ADDRESS.value})
            self.kafka_consumer = KafkaConsumer({'bootstrap.servers' : KafkaConfig.SERVER_ADDRESS.value,
                                                'group.id'           : 'frontend',
                                                'auto.offset.reset'  : 'latest'})
    
        @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
    
        def StartCollector(self, 
                           request : Collector, grpc_context: grpc.ServicerContext # type: ignore
                          ) -> CollectorId: # type: ignore
    
            LOGGER.info ("gRPC message: {:}".format(request))
    
            response = CollectorId()
    
    
            # TODO: Verify the presence of Kpi ID in KpiDB or assume that KPI ID already exists.  
            self.DBobj.add_row_to_db(
                CollectorModel.ConvertCollectorToRow(request)
            )
            self.PublishRequestOnKafka(request)
            
    
            response.collector_id.uuid = request.collector_id.collector_id.uuid # type: ignore
    
    
        def PublishRequestOnKafka(self, collector_obj):
    
            Method to generate collector request on Kafka.
    
            collector_id = collector_obj.collector_id.collector_id.uuid
            collector_to_generate :  Tuple [str, int, int] = (
                collector_obj.kpi_id.kpi_id.uuid,
                collector_obj.duration_s,
                collector_obj.interval_s
            )
            self.kafka_producer.produce(
                KafkaTopic.REQUEST.value,
                key      = collector_id,
                value    = str(collector_to_generate),
                callback = self.delivery_callback
            )
            LOGGER.info("Collector Request Generated: Collector Id: {:}, Value: {:}".format(collector_id, collector_to_generate))
    
            ACTIVE_COLLECTORS.append(collector_id)
            self.kafka_producer.flush()
    
    Waleed Akbar's avatar
    Waleed Akbar committed
        def run_kafka_listener(self):
            # print ("--- STARTED: run_kafka_listener ---")
            threading.Thread(target=self.kafka_listener).start()
            return True
    
        def kafka_listener(self):
    
            """
            listener for response on Kafka topic.
            """
            # # print ("--- STARTED: kafka_listener ---")
            # conusmer_configs = {
            #     'bootstrap.servers' : KAFKA_SERVER_IP,
            #     'group.id'          : 'frontend',
            #     'auto.offset.reset' : 'latest'
            # }
            # # topic_response = "topic_response"
    
            # consumerObj = KafkaConsumer(conusmer_configs)
            self.kafka_consumer.subscribe([KAFKA_TOPICS['response']])
            # print (time.time())
            while True:
                receive_msg = self.kafka_consumer.poll(2.0)
                if receive_msg is None:
                    # print (" - Telemetry frontend listening on Kafka Topic: ", KAFKA_TOPICS['response'])     # added for debugging purposes
                    continue
                elif receive_msg.error():
                    if receive_msg.error().code() == KafkaError._PARTITION_EOF:
    
                    else:
                        print("Consumer error: {}".format(receive_msg.error()))
                        break
                try:
                    collector_id = receive_msg.key().decode('utf-8')
                    if collector_id in ACTIVE_COLLECTORS:
                        (kpi_id, kpi_value) = ast.literal_eval(receive_msg.value().decode('utf-8'))
                        self.process_response(collector_id, kpi_id, kpi_value)
                    else:
                        print(f"collector id does not match.\nRespone ID: '{collector_id}' --- Active IDs: '{ACTIVE_COLLECTORS}' ")
                except Exception as e:
                    print(f"No message key found: {str(e)}")
                    continue
                    # return None
    
        def process_response(self, collector_id: str, kpi_id: str, kpi_value: Any):
            if kpi_id == "-1" and kpi_value == -1:
                # LOGGER.info("Sucessfully terminated Collector: {:}".format(collector_id))
                print ("Sucessfully terminated Collector: ", collector_id)
            else:
                print ("Frontend-Received values Collector Id:", collector_id, "-KPI:", kpi_id, "-VALUE:", kpi_value)
    
        @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
        def delivery_callback(self, err, msg):
            """
            Callback function to handle message delivery status.
            Args:
                err (KafkaError): Kafka error object.
                msg (Message): Kafka message object.
            """
            if err:
                print(f'Message delivery failed: {err}')
            else:
    
    Waleed Akbar's avatar
    Waleed Akbar committed
                print(f'Message delivered to topic {msg.topic()}')
    
        @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
        def StopCollector(self, 
                          request : CollectorId, grpc_context: grpc.ServicerContext # type: ignore
                         ) -> Empty:  # type: ignore
    
            LOGGER.info ("gRPC message: {:}".format(request))
            _collector_id = request.collector_id.uuid
            self.publish_to_kafka_request_topic(_collector_id, "", -1, -1)
    
    Waleed Akbar's avatar
    Waleed Akbar committed
            return Empty()
    
        @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
        def SelectCollectors(self, 
                             request : CollectorFilter, contextgrpc_context: grpc.ServicerContext # type: ignore
                            ) -> CollectorList:  # type: ignore
    
            LOGGER.info("gRPC message: {:}".format(request))
    
    Waleed Akbar's avatar
    Waleed Akbar committed
            response = CollectorList()
    
            filter_to_apply = dict()
            filter_to_apply['kpi_id']       = request.kpi_id[0].kpi_id.uuid
            # filter_to_apply['duration_s'] = request.duration_s[0]
            try:
                rows = self.managementDBobj.select_with_filter(CollectorModel, **filter_to_apply)
            except Exception as e:
                LOGGER.info('Unable to apply filter on kpi descriptor. {:}'.format(e))
            try:
                if len(rows) != 0:
                    for row in rows:
                        collector_obj = Collector()
                        collector_obj.collector_id.collector_id.uuid = row.collector_id
                        response.collector_list.append(collector_obj)
                return response
            except Exception as e:
    
                LOGGER.info('Unable to process response {:}'.format(e))