Skip to content
Snippets Groups Projects
TelemetryBackendService.py 10.9 KiB
Newer Older
# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import threading
from typing import Any, Dict
# from common.proto.context_pb2 import Empty
from confluent_kafka import Producer as KafkaProducer
from confluent_kafka import Consumer as KafkaConsumer
from confluent_kafka import KafkaError
from common.Constants import ServiceNameEnum
from common.Settings import get_service_port_grpc
from common.tools.kafka.Variables import KafkaConfig, KafkaTopic
from common.method_wrappers.Decorator import MetricsPool
Waleed Akbar's avatar
Waleed Akbar committed
from common.tools.service.GenericGrpcService import GenericGrpcService

LOGGER             = logging.getLogger(__name__)
METRICS_POOL       = MetricsPool('TelemetryBackend', 'backendService')
# EXPORTER_ENDPOINT  = "http://10.152.183.2:9100/metrics"
Waleed Akbar's avatar
Waleed Akbar committed
class TelemetryBackendService(GenericGrpcService):
    Class listens for request on Kafka topic, fetches requested metrics from device.
    Produces metrics on both RESPONSE and VALUE kafka topics.
    def __init__(self, cls_name : str = __name__) -> None:
        LOGGER.info('Init TelemetryBackendService')
        port = get_service_port_grpc(ServiceNameEnum.TELEMETRYBACKEND)
        super().__init__(port, cls_name=cls_name)
        self.kafka_producer = KafkaProducer({'bootstrap.servers' : KafkaConfig.get_kafka_address()})
        self.kafka_consumer = KafkaConsumer({'bootstrap.servers' : KafkaConfig.get_kafka_address(),
                                            'group.id'           : 'backend',
                                            'auto.offset.reset'  : 'latest'})
        threading.Thread(target=self.RequestListener).start()

    def RequestListener(self):
        listener for requests on Kafka topic.
        consumer = self.kafka_consumer
        consumer.subscribe([KafkaTopic.REQUEST.value])
            receive_msg = consumer.poll(2.0)
            if receive_msg is None:
                continue
            elif receive_msg.error():
                if receive_msg.error().code() == KafkaError._PARTITION_EOF:
                    continue
                else:
                    print("Consumer error: {}".format(receive_msg.error()))
                    break
            
            collector = json.loads(receive_msg.value().decode('utf-8'))
            collector_id = receive_msg.key().decode('utf-8')
            LOGGER.debug('Recevied Collector: {:} - {:}'.format(collector_id, collector))
            print('Recevied Collector: {:} - {:}'.format(collector_id, collector))

            if collector['duration'] == -1 and collector['interval'] == -1:
                self.TerminateCollectorBackend(collector_id)
                self.RunInitiateCollectorBackend(collector_id, collector)
    def TerminateCollectorBackend(self, collector_id):
        if collector_id in self.running_threads:
            thread, stop_event = self.running_threads[collector_id]
            stop_event.set()
            thread.join()
            print ("Terminating backend (by StopCollector): Collector Id: ", collector_id)
            del self.running_threads[collector_id]
            self.GenerateCollectorResponse(collector_id, "-1", -1)          # Termination confirmation to frontend.
        else:
            print ('Backend collector {:} not found'.format(collector_id))
    def RunInitiateCollectorBackend(self, collector_id: str, collector: str):
        stop_event = threading.Event()
        thread = threading.Thread(target=self.InitiateCollectorBackend, 
                                  args=(collector_id, collector, stop_event))
        self.running_threads[collector_id] = (thread, stop_event)
        thread.start()
    def InitiateCollectorBackend(self, collector_id, collector, stop_event):
        Method receives collector request and initiates collecter backend.
        print("Initiating backend for collector: ", collector_id)
        start_time = time.time()
        while not stop_event.is_set():
            if time.time() - start_time >= collector['duration']:            # condition to terminate backend
                print("Execuation duration completed: Terminating backend: Collector Id: ", collector_id, " - ", time.time() - start_time)
                self.GenerateCollectorResponse(collector_id, "-1", -1)       # Termination confirmation to frontend.
                break
            self.ExtractKpiValue(collector_id, collector['kpi_id'])
            time.sleep(collector['interval'])
    def ExtractKpiValue(self, collector_id: str, kpi_id: str):
        measured_kpi_value = random.randint(1,100)                      # TODO: To be extracted from a device
        print ("Measured Kpi value: {:}".format(measured_kpi_value))
        # measured_kpi_value = self.fetch_node_exporter_metrics()       # exporter extracted metric value against default KPI
        self.GenerateCollectorResponse(collector_id, kpi_id , measured_kpi_value)
    def GenerateCollectorResponse(self, collector_id: str, kpi_id: str, measured_kpi_value: Any):
Waleed Akbar's avatar
Waleed Akbar committed
        Method to write kpi value on RESPONSE Kafka topic
        producer = self.kafka_producer
        kpi_value : Dict = {
            "kpi_id"    : kpi_id,
            "kpi_value" : measured_kpi_value
        }
        producer.produce(
            KafkaTopic.RESPONSE.value,
            key      = collector_id,
            value    = json.dumps(kpi_value),
            callback = self.delivery_callback
        )
        producer.flush()
Waleed Akbar's avatar
Waleed Akbar committed
    def GenerateRawMetric(self, metrics: Any):
        """
        Method writes raw metrics on VALUE Kafka topic
        """
        producer = self.kafka_producer
        some_metric : Dict = {
            "some_id"    : metrics
        }
        producer.produce(
            KafkaTopic.VALUE.value,
            key      = 'raw',
            value    = json.dumps(some_metric),
            callback = self.delivery_callback
        )
        producer.flush()

    def delivery_callback(self, err, msg):
        """
        Callback function to handle message delivery status.
        Args: err (KafkaError): Kafka error object.
              msg (Message): Kafka message object.
        """
        if err: print(f'Message delivery failed: {err}')
        # else:   print(f'Message delivered to topic {msg.topic()}')

# # ----------- BELOW: Actual Implementation of Kafka Producer with Node Exporter -----------
#     @staticmethod
#     def fetch_single_node_exporter_metric():
#         """
#         Method to fetch metrics from Node Exporter.
#         Returns:
#             str: Metrics fetched from Node Exporter.
#         """
#         KPI = "node_network_receive_packets_total"
#         try:
#             response = requests.get(EXPORTER_ENDPOINT) # type: ignore
#             LOGGER.info("Request status {:}".format(response))
#             if response.status_code == 200:
#                 # print(f"Metrics fetched sucessfully...")
#                 metrics = response.text
#                 # Check if the desired metric is available in the response
#                 if KPI in metrics:
#                     KPI_VALUE = TelemetryBackendService.extract_metric_value(metrics, KPI)
#                     # Extract the metric value
#                     if KPI_VALUE is not None:
#                         LOGGER.info("Extracted value of {:} is {:}".format(KPI, KPI_VALUE))
#                         print(f"Extracted value of {KPI} is: {KPI_VALUE}")
#                         return KPI_VALUE
#             else:
#                 LOGGER.info("Failed to fetch metrics. Status code: {:}".format(response.status_code))
#                 # print(f"Failed to fetch metrics. Status code: {response.status_code}")
#                 return None
#         except Exception as e:
#             LOGGER.info("Failed to fetch metrics. Status code: {:}".format(e))
#             # print(f"Failed to fetch metrics: {str(e)}")
#             return None

#     @staticmethod
#     def extract_metric_value(metrics, metric_name):
#         """
#         Method to extract the value of a metric from the metrics string.
#         Args:
#             metrics (str): Metrics string fetched from Exporter.
#             metric_name (str): Name of the metric to extract.
#         Returns:
#             float: Value of the extracted metric, or None if not found.
#         """
#         try:
#             # Find the metric line containing the desired metric name
#             metric_line = next(line for line in metrics.split('\n') if line.startswith(metric_name))
#             # Split the line to extract the metric value
#             metric_value = float(metric_line.split()[1])
#             return metric_value
#         except StopIteration:
#             print(f"Metric '{metric_name}' not found in the metrics.")
#             return None

#     @staticmethod
#     def stream_node_export_metrics_to_raw_topic():
#         try:
#             while True:
#                 response = requests.get(EXPORTER_ENDPOINT)
#                 # print("Response Status {:} ".format(response))
#                 # LOGGER.info("Response Status {:} ".format(response))
#                 try: 
#                     if response.status_code == 200:
#                         producerObj = KafkaProducer(PRODUCER_CONFIG)
#                         producerObj.produce(KAFKA_TOPICS['raw'], key="raw", value= str(response.text), callback=TelemetryBackendService.delivery_callback)
#                         producerObj.flush()
#                         LOGGER.info("Produce to topic")
#                     else:
#                         LOGGER.info("Didn't received expected response. Status code: {:}".format(response.status_code))
#                         print(f"Didn't received expected response. Status code: {response.status_code}")
#                         return None
#                     time.sleep(15)
#                 except Exception as e:
#                     LOGGER.info("Failed to process response. Status code: {:}".format(e))
#                     return None
#         except Exception as e:
#             LOGGER.info("Failed to fetch metrics. Status code: {:}".format(e))
#             print(f"Failed to fetch metrics: {str(e)}")
#             return None
# # ----------- ABOVE: Actual Implementation of Kafka Producer with Node Exporter -----------