Newer
Older
# Copyright 2021-2023 H2020 TeraFlow (https://www.teraflow-h2020.eu/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from datetime import datetime
delacal
committed
from datetime import timedelta
from common.proto.l3_centralizedattackdetector_pb2 import Empty
from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer
from common.proto.l3_attackmitigator_pb2 import L3AttackmitigatorOutput
from common.proto.l3_attackmitigator_pb2_grpc import L3AttackmitigatorStub
from common.proto.monitoring_pb2 import KpiDescriptor
from common.proto.kpi_sample_types_pb2 import KpiSampleType
from monitoring.client.MonitoringClient import MonitoringClient
from common.proto.monitoring_pb2 import Kpi
delacal
committed
delacal
committed
from common.tools.timestamp.Converters import timestamp_utcnow_to_float
delacal
committed
from common.proto.context_pb2 import Timestamp, ServiceId, EndPointId, SliceId, DeviceId
from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient
delacal
committed
# from context.client.ContextClient import ContextClient
from multiprocessing import Process, Queue
delacal
committed
from google.protobuf.json_format import MessageToJson, Parse
import copy
delacal
committed
import uuid
delacal
committed
current_dir = os.path.dirname(os.path.abspath(__file__))
MODEL_FILE = os.path.join(current_dir, "ml_model/crypto_5g_rf_spider_features.onnx")
class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer):
"""
Initialize variables, prediction model and clients of components used by CAD
LOGGER.info("Creating Centralized Attack Detector Service")
self.inference_values = Queue()
self.inference_results = Queue()
self.model = rt.InferenceSession(MODEL_FILE)
self.input_name = self.model.get_inputs()[0].name
self.label_name = self.model.get_outputs()[0].name
self.prob_name = self.model.get_outputs()[1].name
self.monitoring_client = MonitoringClient()
delacal
committed
self.monitored_service_ids = Queue()
self.monitored_kpis = {
"l3_security_status": {
"kpi_id": None,
"description": "L3 - Confidence of the cryptomining detector in the security status in the last time interval of the service {service_id}",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_SECURITY_STATUS_CRYPTO,
"service_ids": [],
},
"l3_ml_model_confidence": {
"kpi_id": None,
"description": "L3 - Security status of the service in a time interval of the service {service_id} (“0” if no attack has been detected on the service and “1” if a cryptomining attack has been detected)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_ML_CONFIDENCE,
"service_ids": [],
},
"l3_unique_attack_conns": {
"kpi_id": None,
"description": "L3 - Number of attack connections detected in a time interval of the service {service_id} (attacks of the same connection [origin IP, origin port, destination IP and destination port] are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACK_CONNS,
"service_ids": [],
},
"l3_unique_compromised_clients": {
"kpi_id": None,
"description": "L3 - Number of unique compromised clients of the service in a time interval of the service {service_id} (attacks from the same origin IP are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_COMPROMISED_CLIENTS,
"service_ids": [],
},
"l3_unique_attackers": {
"kpi_id": None,
"description": "L3 - number of unique attackers of the service in a time interval of the service {service_id} (attacks from the same destination IP are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACKERS,
"service_ids": [],
},
}
self.attackmitigator_client = l3_attackmitigatorClient()
delacal
committed
# self.context_client = ContextClient()
# self.context_id = "admin"
# Environment variables
self.CLASSIFICATION_THRESHOLD = os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5)
delacal
committed
self.MONITORED_KPIS_TIME_INTERVAL_AGG = os.getenv("MONITORED_KPIS_TIME_INTERVAL_AGG", 30)
# Constants
self.NORMAL_CLASS = 0
self.CRYPTO_CLASS = 1
# start monitoring process
delacal
committed
self.monitoring_process = Process(
target=self.monitor_kpis,
args=(
self.monitored_service_ids,
self.inference_results,
),
)
# self.monitoring_process.start()
"""
Create a monitored KPI for a specific service and add it to the Monitoring Client
-input:
+ client: Monitoring Client object where the KPI will be tracked
+ service_id: service ID where the KPI will be monitored
delacal
committed
+ kpi_description: description of the KPI
+ kpi_sample_type: KPI sample type of the KPI (it must be defined in the kpi_sample_types.proto file)
-output: KPI identifier representing the KPI
"""
delacal
committed
def create_kpi(
delacal
committed
self,
service_id,
device_id,
endpoint_id,
# slice_id,
kpi_name,
kpi_description,
kpi_sample_type,
delacal
committed
):
delacal
committed
kpidescriptor = KpiDescriptor()
kpidescriptor.kpi_description = kpi_description
kpidescriptor.service_id.service_uuid.uuid = service_id.service_uuid.uuid
delacal
committed
kpidescriptor.device_id.device_uuid.uuid = device_id.device_uuid.uuid
kpidescriptor.endpoint_id.endpoint_uuid.uuid = endpoint_id.endpoint_uuid.uuid
delacal
committed
# kpidescriptor.slice_id.slice_uuid.uuid = slice_id.slice_uuid.uuid
delacal
committed
kpidescriptor.kpi_sample_type = kpi_sample_type
delacal
committed
new_kpi = self.monitoring_client.SetKpi(kpidescriptor)
delacal
committed
LOGGER.info("Created KPI {}".format(kpi_name))
return new_kpi
"""
Create the monitored KPIs for a specific service, add them to the Monitoring Client and store their identifiers in the monitored_kpis dictionary
-input:
+ service_id: service ID where the KPIs will be monitored
-output: None
"""
delacal
committed
def create_kpis(self, service_id, device_id, endpoint_id):
delacal
committed
LOGGER.info("Creating KPIs for service {}".format(service_id))
# for now, all the KPIs are created for all the services from which requests are received
for kpi in self.monitored_kpis:
delacal
committed
# slice_ids_list = self.context_client.ListSliceIds(self.context_id)[0]
# # generate random slice_id
# slice_id = SliceId()
# slice_id.slice_uuid.uuid = str(uuid.uuid4())
# generate random device_id
device_id = DeviceId()
device_id.device_uuid.uuid = str(uuid.uuid4())
created_kpi = self.create_kpi(
service_id,
delacal
committed
device_id,
endpoint_id,
delacal
committed
# slice_id,
delacal
committed
kpi,
delacal
committed
self.monitored_kpis[kpi]["description"].format(service_id=service_id.service_uuid.uuid),
self.monitored_kpis[kpi]["kpi_sample_type"],
)
self.monitored_kpis[kpi]["kpi_id"] = created_kpi.kpi_id
self.monitored_kpis[kpi]["service_ids"].append(service_id.service_uuid.uuid)
delacal
committed
self.monitoring_process.start()
def monitor_kpis(self, service_ids, inference_results):
self.monitoring_client_test = MonitoringClient()
monitor_inference_results = []
monitor_service_ids = []
# sleep(10)
time_interval_start = None
delacal
committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# get all information from the inference_results queue
# deserialize the inference results
# for i in range(len(monitor_inference_results)):
# monitor_inference_results[i]["output"]["service_id"] = Parse(
# monitor_inference_results[i]["output"]["service_id"], ServiceId()
# )
# monitor_inference_results[i]["output"]["endpoint_id"] = Parse(
# monitor_inference_results[i]["output"]["endpoint_id"], EndPointId()
# )
LOGGER.debug("Sleeping for %s seconds", self.MONITORED_KPIS_TIME_INTERVAL_AGG)
sleep(self.MONITORED_KPIS_TIME_INTERVAL_AGG)
for i in range(service_ids.qsize()):
new_service_id = service_ids.get()
service_id = Parse(new_service_id, ServiceId())
monitor_service_ids.append(service_id)
for i in range(inference_results.qsize()):
new_inference_result = inference_results.get()
new_inference_result["output"]["service_id"] = Parse(
new_inference_result["output"]["service_id"], ServiceId()
)
new_inference_result["output"]["endpoint_id"] = Parse(
new_inference_result["output"]["endpoint_id"], EndPointId()
)
monitor_inference_results.append(new_inference_result)
LOGGER.debug("monitor_inference_results: {}".format(len(monitor_inference_results)))
LOGGER.debug("monitor_service_ids: {}".format(len(monitor_service_ids)))
while len(monitor_inference_results) == 0:
LOGGER.debug("monitor_inference_results is empty, waiting for new inference results")
delacal
committed
for i in range(inference_results.qsize()):
delacal
committed
new_inference_result = inference_results.get()
new_inference_result["output"]["service_id"] = Parse(
new_inference_result["output"]["service_id"], ServiceId()
delacal
committed
)
delacal
committed
new_inference_result["output"]["endpoint_id"] = Parse(
new_inference_result["output"]["endpoint_id"], EndPointId()
delacal
committed
)
delacal
committed
monitor_inference_results.append(new_inference_result)
delacal
committed
delacal
committed
sleep(1)
delacal
committed
delacal
committed
for service_id in monitor_service_ids:
LOGGER.debug("service_id: {}".format(service_id))
delacal
committed
delacal
committed
time_interval = self.MONITORED_KPIS_TIME_INTERVAL_AGG
# time_interval_start = datetime.utcnow()
delacal
committed
delacal
committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# assign the timestamp of the first inference result to the time_interval_start
if time_interval_start is None:
time_interval_start = monitor_inference_results[0]["timestamp"]
else:
time_interval_start = time_interval_start + timedelta(seconds=time_interval)
# add time_interval to the current time to get the time interval end
time_interval_end = time_interval_start + timedelta(seconds=time_interval)
# delete the inference results that are previous to the time interval start
deleted_items = []
for i in range(len(monitor_inference_results)):
if monitor_inference_results[i]["timestamp"] < time_interval_start:
deleted_items.append(i)
LOGGER.debug("deleted_items: {}".format(deleted_items))
for i in range(len(deleted_items)):
monitor_inference_results.pop(deleted_items[i] - i)
if len(monitor_inference_results) == 0:
break
LOGGER.debug("time_interval_start: {}".format(time_interval_start))
LOGGER.debug("time_interval_end: {}".format(time_interval_end))
delacal
committed
delacal
committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# L3 security status
kpi_security_status = Kpi()
kpi_security_status.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_security_status"]["kpi_id"])
# get the output.tag of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
outputs_last_time_interval = []
for i in range(len(monitor_inference_results)):
if (
monitor_inference_results[i]["timestamp"] >= time_interval_start
and monitor_inference_results[i]["timestamp"] < time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid in self.monitored_kpis["l3_security_status"]["service_ids"]
):
outputs_last_time_interval.append(monitor_inference_results[i]["output"]["tag"])
kpi_security_status.kpi_value.int32Val = (
0 if np.all(outputs_last_time_interval == self.NORMAL_CLASS) else 1
)
# L3 ML model confidence
kpi_conf = Kpi()
kpi_conf.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_ml_model_confidence"]["kpi_id"])
# get the output.confidence of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
confidences_normal_last_time_interval = []
confidences_crypto_last_time_interval = []
for i in range(len(monitor_inference_results)):
LOGGER.debug("monitor_inference_results[i]: {}".format(monitor_inference_results[i]))
if (
monitor_inference_results[i]["timestamp"] >= time_interval_start
and monitor_inference_results[i]["timestamp"] < time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid
in self.monitored_kpis["l3_ml_model_confidence"]["service_ids"]
):
if monitor_inference_results[i]["output"]["tag"] == self.NORMAL_CLASS:
confidences_normal_last_time_interval.append(
monitor_inference_results[i]["output"]["confidence"]
)
elif monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
confidences_crypto_last_time_interval.append(
monitor_inference_results[i]["output"]["confidence"]
)
else:
LOGGER.debug("Unknown tag: {}".format(monitor_inference_results[i]["output"]["tag"]))
LOGGER.debug("confidences_normal_last_time_interval: {}".format(confidences_normal_last_time_interval))
LOGGER.debug("confidences_crypto_last_time_interval: {}".format(confidences_crypto_last_time_interval))
kpi_conf.kpi_value.floatVal = (
np.mean(confidences_crypto_last_time_interval)
if np.all(outputs_last_time_interval == self.CRYPTO_CLASS)
else np.mean(confidences_normal_last_time_interval)
)
# L3 unique attack connections
kpi_unique_attack_conns = Kpi()
kpi_unique_attack_conns.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"])
# get the number of unique attack connections (grouping by origin IP, origin port, destination IP, destination port) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
num_unique_attack_conns_last_time_interval = 0
unique_attack_conns_last_time_interval = []
for i in range(len(monitor_inference_results)):
if (
monitor_inference_results[i]["timestamp"] >= time_interval_start
and monitor_inference_results[i]["timestamp"] < time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid
in self.monitored_kpis["l3_unique_attack_conns"]["service_ids"]
):
if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
current_attack_conn = {
"ip_o": monitor_inference_results[i]["output"]["ip_o"],
"port_o": monitor_inference_results[i]["output"]["port_o"],
"ip_d": monitor_inference_results[i]["output"]["ip_d"],
"port_d": monitor_inference_results[i]["output"]["port_d"],
}
for j in range(len(unique_attack_conns_last_time_interval)):
if current_attack_conn == unique_attack_conns_last_time_interval[j]:
break
num_unique_attack_conns_last_time_interval += 1
unique_attack_conns_last_time_interval.append(current_attack_conn)
kpi_unique_attack_conns.kpi_value.int32Val = num_unique_attack_conns_last_time_interval
# L3 unique compromised clients
kpi_unique_compromised_clients = Kpi()
kpi_unique_compromised_clients.kpi_id.kpi_id.CopyFrom(
self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"]
)
# get the number of unique compromised clients (grouping by origin IP) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
num_unique_compromised_clients_last_time_interval = 0
unique_compromised_clients_last_time_interval = []
for i in range(len(monitor_inference_results)):
if (
monitor_inference_results[i]["timestamp"] >= time_interval_start
and monitor_inference_results[i]["timestamp"] < time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid
in self.monitored_kpis["l3_unique_attack_conns"]["service_ids"]
):
if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
if (
monitor_inference_results[i]["output"]["ip_o"]
not in unique_compromised_clients_last_time_interval
):
unique_compromised_clients_last_time_interval.append(
monitor_inference_results[i]["output"]["ip_o"]
delacal
committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
num_unique_compromised_clients_last_time_interval += 1
kpi_unique_compromised_clients.kpi_value.int32Val = num_unique_compromised_clients_last_time_interval
# L3 unique attackers
kpi_unique_attackers = Kpi()
kpi_unique_attackers.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"])
# get the number of unique attackers (grouping by destination ip) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
num_unique_attackers_last_time_interval = 0
unique_attackers_last_time_interval = []
for i in range(len(monitor_inference_results)):
if (
monitor_inference_results[i]["timestamp"] >= time_interval_start
and monitor_inference_results[i]["timestamp"] < time_interval_end
and monitor_inference_results[i]["output"]["service_id"] == service_id
and service_id.service_uuid.uuid
in self.monitored_kpis["l3_unique_attack_conns"]["service_ids"]
):
if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
if (
monitor_inference_results[i]["output"]["ip_d"]
not in unique_attackers_last_time_interval
):
unique_attackers_last_time_interval.append(
monitor_inference_results[i]["output"]["ip_d"]
delacal
committed
num_unique_attackers_last_time_interval += 1
delacal
committed
kpi_unique_attackers.kpi_value.int32Val = num_unique_attackers_last_time_interval
delacal
committed
delacal
committed
timestamp = Timestamp()
timestamp.timestamp = timestamp_utcnow_to_float()
delacal
committed
delacal
committed
kpi_security_status.timestamp.CopyFrom(timestamp)
kpi_conf.timestamp.CopyFrom(timestamp)
kpi_unique_attack_conns.timestamp.CopyFrom(timestamp)
kpi_unique_compromised_clients.timestamp.CopyFrom(timestamp)
kpi_unique_attackers.timestamp.CopyFrom(timestamp)
delacal
committed
delacal
committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
LOGGER.debug("Sending KPIs to monitoring server")
LOGGER.debug("kpi_security_status: {}".format(kpi_security_status))
LOGGER.debug("kpi_conf: {}".format(kpi_conf))
LOGGER.debug("kpi_unique_attack_conns: {}".format(kpi_unique_attack_conns))
LOGGER.debug("kpi_unique_compromised_clients: {}".format(kpi_unique_compromised_clients))
LOGGER.debug("kpi_unique_attackers: {}".format(kpi_unique_attackers))
_create_kpi_request = KpiDescriptor()
_create_kpi_request.kpi_description = "KPI Description Test"
_create_kpi_request.kpi_sample_type = KpiSampleType.KPISAMPLETYPE_UNKNOWN
_create_kpi_request.device_id.device_uuid.uuid = "DEVUPM" # pylint: disable=maybe-no-member
_create_kpi_request.service_id.service_uuid.uuid = "SERVUPM" # pylint: disable=maybe-no-member
_create_kpi_request.endpoint_id.endpoint_uuid.uuid = "ENDUPM" # pylint: disable=maybe-no-member
new_kpi = self.monitoring_client_test.SetKpi(_create_kpi_request)
LOGGER.debug("New KPI: {}".format(new_kpi))
_include_kpi_request = Kpi()
_include_kpi_request.kpi_id.kpi_id.uuid = new_kpi.kpi_id.uuid
_include_kpi_request.timestamp.timestamp = timestamp_utcnow_to_float()
_include_kpi_request.kpi_value.floatVal = 500
self.monitoring_client_test.IncludeKpi(_include_kpi_request)
# self.monitoring_client.IncludeKpi(kpi_security_status)
# self.monitoring_client.IncludeKpi(kpi_conf)
# self.monitoring_client.IncludeKpi(kpi_unique_attack_conns)
# self.monitoring_client.IncludeKpi(kpi_unique_compromised_clients)
# self.monitoring_client.IncludeKpi(kpi_unique_attackers)
delacal
committed
delacal
committed
LOGGER.debug("KPIs sent to monitoring server")
"""
Classify connection as standard traffic or cryptomining attack and return results
-input:
+ request: L3CentralizedattackdetectorMetrics object with connection features information
-output: L3AttackmitigatorOutput object with information about the assigned class and prediction confidence
"""
request.c_pkts_all,
request.c_ack_cnt,
request.c_bytes_uniq,
request.c_pkts_data,
request.c_bytes_all,
request.s_pkts_all,
request.s_ack_cnt,
request.s_bytes_uniq,
request.s_pkts_data,
request.s_bytes_all,
predictions = self.model.run([self.prob_name], {self.input_name: x_data.astype(np.float32)})[0]
# Gather the predicted class, the probability of that class and other relevant information required to block the attack
output_message = {
"confidence": None,
"timestamp": datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
"ip_o": request.ip_o,
"ip_d": request.ip_d,
"tag_name": None,
"tag": None,
"flow_id": request.flow_id,
"protocol": request.protocol,
"port_o": request.port_o,
"service_id": request.service_id,
"endpoint_id": request.endpoint_id,
"time_start": request.time_start,
"time_end": request.time_end,
}
if predictions[0][1] >= self.CLASSIFICATION_THRESHOLD:
output_message["confidence"] = predictions[0][1]
output_message["tag_name"] = "Crypto"
output_message["tag"] = self.CRYPTO_CLASS
else:
output_message["confidence"] = predictions[0][0]
output_message["tag_name"] = "Normal"
output_message["tag"] = self.NORMAL_CLASS
"""
Receive features from Attack Mitigator, predict attack and communicate with Attack Mitigator
-input:
+ request: L3CentralizedattackdetectorMetrics object with connection features information
-output: Empty object with a message about the execution of the function
"""
def SendInput(self, request, context):
# Store the data sent in the request
delacal
committed
# Protobuff messages are NOT pickable, so we need to serialize them first
# self.inference_values.put({"request": request, "timestamp": datetime.now()})
# Perform inference with the data sent in the request
logging.info("Performing inference...")
cryptomining_detector_output = self.make_inference(request)
logging.info("Inference performed correctly")
# Store the results of the inference that will be later used to monitor the KPIs
delacal
committed
# Protobuff messages are NOT pickable, so we need to serialize them first
cryptomining_detector_output_serialized = copy.deepcopy(cryptomining_detector_output)
cryptomining_detector_output_serialized["service_id"] = MessageToJson(
request.service_id, preserving_proto_field_name=True
)
cryptomining_detector_output_serialized["endpoint_id"] = MessageToJson(
request.endpoint_id, preserving_proto_field_name=True
)
self.inference_results.put({"output": cryptomining_detector_output_serialized, "timestamp": datetime.now()})
service_id = request.service_id
delacal
committed
device_id = request.endpoint_id.device_id
endpoint_id = request.endpoint_id
# Check if a request of a new service has been received and, if so, create the monitored KPIs for that service
if service_id not in self.service_ids:
delacal
committed
self.create_kpis(service_id, device_id, endpoint_id)
self.service_ids.append(service_id)
delacal
committed
self.monitored_service_ids.put(MessageToJson(service_id, preserving_proto_field_name=True))
# Only notify Attack Mitigator when a cryptomining connection has been detected
if cryptomining_detector_output["tag_name"] == "Crypto":
logging.info("Crypto attack detected")
# Notify the Attack Mitigator component about the attack
logging.info(
"Notifying the Attack Mitigator component about the attack in order to block the connection..."
)
delacal
committed
logging.info("Sending the connection information to the Attack Mitigator component...")
message = L3AttackmitigatorOutput(**cryptomining_detector_output)
response = self.attackmitigator_client.SendOutput(message)
delacal
committed
# logging.info("Attack Mitigator notified and received response: ", response.message) # FIX No message received
logging.info("Attack Mitigator notified")
return Empty(message="OK, information received and mitigator notified abou the attack")
except Exception as e:
logging.error("Error notifying the Attack Mitigator component about the attack: ", e)
logging.error("Couldn't find l3_attackmitigator")
return Empty(message="Attack Mitigator not found")
logging.info("No attack detected")
return Empty(message="Ok, information received (no attack detected)")
"""
logging.info("Returning inference output...")
k = np.multiply(self.inference_values, [2])