Skip to content
Snippets Groups Projects
l3_centralizedattackdetectorServiceServicerImpl.py 29.3 KiB
Newer Older
# Copyright 2021-2023 H2020 TeraFlow (https://www.teraflow-h2020.eu/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

ldemarcosm's avatar
ldemarcosm committed
from __future__ import print_function
from datetime import datetime
ldemarcosm's avatar
ldemarcosm committed
import os
import grpc
import numpy as np
import onnxruntime as rt
ldemarcosm's avatar
ldemarcosm committed
import logging
from time import sleep
from common.proto.l3_centralizedattackdetector_pb2 import Empty
from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer

from common.proto.l3_attackmitigator_pb2 import L3AttackmitigatorOutput
from common.proto.l3_attackmitigator_pb2_grpc import L3AttackmitigatorStub

from common.proto.monitoring_pb2 import KpiDescriptor
from common.proto.kpi_sample_types_pb2 import KpiSampleType

from monitoring.client.MonitoringClient import MonitoringClient
from common.proto.monitoring_pb2 import Kpi
from common.tools.timestamp.Converters import timestamp_utcnow_to_float
from common.proto.context_pb2 import Timestamp, ServiceId, EndPointId, SliceId, DeviceId
ldemarcosm's avatar
ldemarcosm committed

from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient

# from context.client.ContextClient import ContextClient

from multiprocessing import Process, Queue

from google.protobuf.json_format import MessageToJson, Parse
import copy

ldemarcosm's avatar
ldemarcosm committed
LOGGER = logging.getLogger(__name__)
current_dir = os.path.dirname(os.path.abspath(__file__))
MODEL_FILE = os.path.join(current_dir, "ml_model/crypto_5g_rf_spider_features.onnx")
ldemarcosm's avatar
ldemarcosm committed

class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer):

    """
    Initialize variables, prediction model and clients of components used by CAD
ldemarcosm's avatar
ldemarcosm committed
    def __init__(self):
        LOGGER.info("Creating Centralized Attack Detector Service")

        self.inference_values = Queue()
        self.inference_results = Queue()
        self.model = rt.InferenceSession(MODEL_FILE)
        self.input_name = self.model.get_inputs()[0].name
        self.label_name = self.model.get_outputs()[0].name
        self.prob_name = self.model.get_outputs()[1].name
        self.monitoring_client = MonitoringClient()
        self.service_ids = []
        self.monitored_kpis = {
            "l3_security_status": {
                "kpi_id": None,
                "description": "L3 - Confidence of the cryptomining detector in the security status in the last time interval of the service {service_id}",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_SECURITY_STATUS_CRYPTO,
                "service_ids": [],
            },
            "l3_ml_model_confidence": {
                "kpi_id": None,
                "description": "L3 - Security status of the service in a time interval of the service {service_id} (“0” if no attack has been detected on the service and “1” if a cryptomining attack has been detected)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_ML_CONFIDENCE,
                "service_ids": [],
            },
            "l3_unique_attack_conns": {
                "kpi_id": None,
                "description": "L3 - Number of attack connections detected in a time interval of the service {service_id} (attacks of the same connection [origin IP, origin port, destination IP and destination port] are only considered once)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACK_CONNS,
                "service_ids": [],
            },
            "l3_unique_compromised_clients": {
                "kpi_id": None,
                "description": "L3 - Number of unique compromised clients of the service in a time interval of the service {service_id} (attacks from the same origin IP are only considered once)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_COMPROMISED_CLIENTS,
                "service_ids": [],
            },
            "l3_unique_attackers": {
                "kpi_id": None,
                "description": "L3 - number of unique attackers of the service in a time interval of the service {service_id} (attacks from the same destination IP are only considered once)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACKERS,
        self.attackmitigator_client = l3_attackmitigatorClient()
        # self.context_client = ContextClient()
        # self.context_id = "admin"
        # Environment variables
        self.CLASSIFICATION_THRESHOLD = os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5)
        self.MONITORED_KPIS_TIME_INTERVAL_AGG = os.getenv("MONITORED_KPIS_TIME_INTERVAL_AGG", 30)
        # Constants
        self.NORMAL_CLASS = 0
        self.CRYPTO_CLASS = 1
        # start monitoring process
        self.monitoring_process = Process(
            target=self.monitor_kpis,
            args=(
                self.monitored_service_ids,
                self.inference_results,
            ),
        )
        # self.monitoring_process.start()
    Create a monitored KPI for a specific service and add it to the Monitoring Client
        -input: 
            + client: Monitoring Client object where the KPI will be tracked
            + service_id: service ID where the KPI will be monitored
            + kpi_description: description of the KPI
            + kpi_sample_type: KPI sample type of the KPI (it must be defined in the kpi_sample_types.proto file)
        -output: KPI identifier representing the KPI
        self,
        service_id,
        device_id,
        endpoint_id,
        # slice_id,
        kpi_name,
        kpi_description,
        kpi_sample_type,
        kpidescriptor = KpiDescriptor()
        kpidescriptor.kpi_description = kpi_description
        kpidescriptor.service_id.service_uuid.uuid = service_id.service_uuid.uuid
        kpidescriptor.device_id.device_uuid.uuid = device_id.device_uuid.uuid
        kpidescriptor.endpoint_id.endpoint_uuid.uuid = endpoint_id.endpoint_uuid.uuid
        # kpidescriptor.slice_id.slice_uuid.uuid = slice_id.slice_uuid.uuid
        kpidescriptor.kpi_sample_type = kpi_sample_type
        new_kpi = self.monitoring_client.SetKpi(kpidescriptor)
        LOGGER.info("Created KPI {}".format(kpi_name))
ldemarcosm's avatar
ldemarcosm committed

    """
    Create the monitored KPIs for a specific service, add them to the Monitoring Client and store their identifiers in the monitored_kpis dictionary
        -input:
            + service_id: service ID where the KPIs will be monitored
        -output: None
    """

    def create_kpis(self, service_id, device_id, endpoint_id):
        LOGGER.info("Creating KPIs for service {}".format(service_id))

        # for now, all the KPIs are created for all the services from which requests are received
        for kpi in self.monitored_kpis:
            # slice_ids_list = self.context_client.ListSliceIds(self.context_id)[0]
            # # generate random slice_id
            # slice_id = SliceId()
            # slice_id.slice_uuid.uuid = str(uuid.uuid4())

            # generate random device_id
            device_id = DeviceId()
            device_id.device_uuid.uuid = str(uuid.uuid4())

            created_kpi = self.create_kpi(
                service_id,
                self.monitored_kpis[kpi]["description"].format(service_id=service_id.service_uuid.uuid),
                self.monitored_kpis[kpi]["kpi_sample_type"],
            )
            self.monitored_kpis[kpi]["kpi_id"] = created_kpi.kpi_id
            self.monitored_kpis[kpi]["service_ids"].append(service_id.service_uuid.uuid)

        self.monitoring_process.start()

    def monitor_kpis(self, service_ids, inference_results):
        self.monitoring_client_test = MonitoringClient()

        monitor_inference_results = []
        monitor_service_ids = []

        # sleep(10)
        time_interval_start = None

            # get all information from the inference_results queue
            # deserialize the inference results
            # for i in range(len(monitor_inference_results)):
            #     monitor_inference_results[i]["output"]["service_id"] = Parse(
            #         monitor_inference_results[i]["output"]["service_id"], ServiceId()
            #     )
            #     monitor_inference_results[i]["output"]["endpoint_id"] = Parse(
            #         monitor_inference_results[i]["output"]["endpoint_id"], EndPointId()
            #     )

            LOGGER.debug("Sleeping for %s seconds", self.MONITORED_KPIS_TIME_INTERVAL_AGG)
            sleep(self.MONITORED_KPIS_TIME_INTERVAL_AGG)

            for i in range(service_ids.qsize()):
                new_service_id = service_ids.get()
                service_id = Parse(new_service_id, ServiceId())
                monitor_service_ids.append(service_id)

            for i in range(inference_results.qsize()):
                new_inference_result = inference_results.get()
                new_inference_result["output"]["service_id"] = Parse(
                    new_inference_result["output"]["service_id"], ServiceId()
                )
                new_inference_result["output"]["endpoint_id"] = Parse(
                    new_inference_result["output"]["endpoint_id"], EndPointId()
                )

                monitor_inference_results.append(new_inference_result)

            LOGGER.debug("monitor_inference_results: {}".format(len(monitor_inference_results)))
            LOGGER.debug("monitor_service_ids: {}".format(len(monitor_service_ids)))

            while len(monitor_inference_results) == 0:
                LOGGER.debug("monitor_inference_results is empty, waiting for new inference results")
                    new_inference_result = inference_results.get()
                    new_inference_result["output"]["service_id"] = Parse(
                        new_inference_result["output"]["service_id"], ServiceId()
                    new_inference_result["output"]["endpoint_id"] = Parse(
                        new_inference_result["output"]["endpoint_id"], EndPointId()
                    monitor_inference_results.append(new_inference_result)
            for service_id in monitor_service_ids:
                LOGGER.debug("service_id: {}".format(service_id))
                time_interval = self.MONITORED_KPIS_TIME_INTERVAL_AGG
                # time_interval_start = datetime.utcnow()
                # assign the timestamp of the first inference result to the time_interval_start
                if time_interval_start is None:
                    time_interval_start = monitor_inference_results[0]["timestamp"]
                else:
                    time_interval_start = time_interval_start + timedelta(seconds=time_interval)

                # add time_interval to the current time to get the time interval end
                time_interval_end = time_interval_start + timedelta(seconds=time_interval)

                # delete the inference results that are previous to the time interval start
                deleted_items = []

                for i in range(len(monitor_inference_results)):
                    if monitor_inference_results[i]["timestamp"] < time_interval_start:
                        deleted_items.append(i)

                LOGGER.debug("deleted_items: {}".format(deleted_items))

                for i in range(len(deleted_items)):
                    monitor_inference_results.pop(deleted_items[i] - i)

                if len(monitor_inference_results) == 0:
                    break

                LOGGER.debug("time_interval_start: {}".format(time_interval_start))
                LOGGER.debug("time_interval_end: {}".format(time_interval_end))
                # L3 security status
                kpi_security_status = Kpi()
                kpi_security_status.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_security_status"]["kpi_id"])

                # get the output.tag of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                outputs_last_time_interval = []

                for i in range(len(monitor_inference_results)):
                    if (
                        monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and monitor_inference_results[i]["timestamp"] < time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid in self.monitored_kpis["l3_security_status"]["service_ids"]
                    ):
                        outputs_last_time_interval.append(monitor_inference_results[i]["output"]["tag"])

                kpi_security_status.kpi_value.int32Val = (
                    0 if np.all(outputs_last_time_interval == self.NORMAL_CLASS) else 1
                )

                # L3 ML model confidence
                kpi_conf = Kpi()
                kpi_conf.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_ml_model_confidence"]["kpi_id"])

                # get the output.confidence of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                confidences_normal_last_time_interval = []
                confidences_crypto_last_time_interval = []

                for i in range(len(monitor_inference_results)):
                    LOGGER.debug("monitor_inference_results[i]: {}".format(monitor_inference_results[i]))

                    if (
                        monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and monitor_inference_results[i]["timestamp"] < time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid
                        in self.monitored_kpis["l3_ml_model_confidence"]["service_ids"]
                    ):
                        if monitor_inference_results[i]["output"]["tag"] == self.NORMAL_CLASS:
                            confidences_normal_last_time_interval.append(
                                monitor_inference_results[i]["output"]["confidence"]
                            )
                        elif monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            confidences_crypto_last_time_interval.append(
                                monitor_inference_results[i]["output"]["confidence"]
                            )
                        else:
                            LOGGER.debug("Unknown tag: {}".format(monitor_inference_results[i]["output"]["tag"]))

                LOGGER.debug("confidences_normal_last_time_interval: {}".format(confidences_normal_last_time_interval))
                LOGGER.debug("confidences_crypto_last_time_interval: {}".format(confidences_crypto_last_time_interval))

                kpi_conf.kpi_value.floatVal = (
                    np.mean(confidences_crypto_last_time_interval)
                    if np.all(outputs_last_time_interval == self.CRYPTO_CLASS)
                    else np.mean(confidences_normal_last_time_interval)
                )

                # L3 unique attack connections
                kpi_unique_attack_conns = Kpi()
                kpi_unique_attack_conns.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"])

                # get the number of unique attack connections (grouping by origin IP, origin port, destination IP, destination port) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                num_unique_attack_conns_last_time_interval = 0
                unique_attack_conns_last_time_interval = []

                for i in range(len(monitor_inference_results)):
                    if (
                        monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and monitor_inference_results[i]["timestamp"] < time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid
                        in self.monitored_kpis["l3_unique_attack_conns"]["service_ids"]
                    ):
                        if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            current_attack_conn = {
                                "ip_o": monitor_inference_results[i]["output"]["ip_o"],
                                "port_o": monitor_inference_results[i]["output"]["port_o"],
                                "ip_d": monitor_inference_results[i]["output"]["ip_d"],
                                "port_d": monitor_inference_results[i]["output"]["port_d"],
                            }

                            for j in range(len(unique_attack_conns_last_time_interval)):
                                if current_attack_conn == unique_attack_conns_last_time_interval[j]:
                                    break

                                num_unique_attack_conns_last_time_interval += 1
                                unique_attack_conns_last_time_interval.append(current_attack_conn)

                kpi_unique_attack_conns.kpi_value.int32Val = num_unique_attack_conns_last_time_interval

                # L3 unique compromised clients
                kpi_unique_compromised_clients = Kpi()
                kpi_unique_compromised_clients.kpi_id.kpi_id.CopyFrom(
                    self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"]
                )

                # get the number of unique compromised clients (grouping by origin IP) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                num_unique_compromised_clients_last_time_interval = 0
                unique_compromised_clients_last_time_interval = []

                for i in range(len(monitor_inference_results)):
                    if (
                        monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and monitor_inference_results[i]["timestamp"] < time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid
                        in self.monitored_kpis["l3_unique_attack_conns"]["service_ids"]
                    ):
                        if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            if (
                                monitor_inference_results[i]["output"]["ip_o"]
                                not in unique_compromised_clients_last_time_interval
                            ):
                                unique_compromised_clients_last_time_interval.append(
                                    monitor_inference_results[i]["output"]["ip_o"]
                                num_unique_compromised_clients_last_time_interval += 1

                kpi_unique_compromised_clients.kpi_value.int32Val = num_unique_compromised_clients_last_time_interval

                # L3 unique attackers
                kpi_unique_attackers = Kpi()
                kpi_unique_attackers.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"])

                # get the number of unique attackers (grouping by destination ip) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                num_unique_attackers_last_time_interval = 0
                unique_attackers_last_time_interval = []

                for i in range(len(monitor_inference_results)):
                    if (
                        monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and monitor_inference_results[i]["timestamp"] < time_interval_end
                        and monitor_inference_results[i]["output"]["service_id"] == service_id
                        and service_id.service_uuid.uuid
                        in self.monitored_kpis["l3_unique_attack_conns"]["service_ids"]
                    ):
                        if monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            if (
                                monitor_inference_results[i]["output"]["ip_d"]
                                not in unique_attackers_last_time_interval
                            ):
                                unique_attackers_last_time_interval.append(
                                    monitor_inference_results[i]["output"]["ip_d"]
                kpi_unique_attackers.kpi_value.int32Val = num_unique_attackers_last_time_interval
                timestamp = Timestamp()
                timestamp.timestamp = timestamp_utcnow_to_float()
                kpi_security_status.timestamp.CopyFrom(timestamp)
                kpi_conf.timestamp.CopyFrom(timestamp)
                kpi_unique_attack_conns.timestamp.CopyFrom(timestamp)
                kpi_unique_compromised_clients.timestamp.CopyFrom(timestamp)
                kpi_unique_attackers.timestamp.CopyFrom(timestamp)
                LOGGER.debug("Sending KPIs to monitoring server")

                LOGGER.debug("kpi_security_status: {}".format(kpi_security_status))
                LOGGER.debug("kpi_conf: {}".format(kpi_conf))
                LOGGER.debug("kpi_unique_attack_conns: {}".format(kpi_unique_attack_conns))
                LOGGER.debug("kpi_unique_compromised_clients: {}".format(kpi_unique_compromised_clients))
                LOGGER.debug("kpi_unique_attackers: {}".format(kpi_unique_attackers))

                _create_kpi_request = KpiDescriptor()
                _create_kpi_request.kpi_description = "KPI Description Test"
                _create_kpi_request.kpi_sample_type = KpiSampleType.KPISAMPLETYPE_UNKNOWN
                _create_kpi_request.device_id.device_uuid.uuid = "DEVUPM"  # pylint: disable=maybe-no-member
                _create_kpi_request.service_id.service_uuid.uuid = "SERVUPM"  # pylint: disable=maybe-no-member
                _create_kpi_request.endpoint_id.endpoint_uuid.uuid = "ENDUPM"  # pylint: disable=maybe-no-member

                new_kpi = self.monitoring_client_test.SetKpi(_create_kpi_request)
                LOGGER.debug("New KPI: {}".format(new_kpi))

                _include_kpi_request = Kpi()
                _include_kpi_request.kpi_id.kpi_id.uuid = new_kpi.kpi_id.uuid
                _include_kpi_request.timestamp.timestamp = timestamp_utcnow_to_float()
                _include_kpi_request.kpi_value.floatVal = 500

                self.monitoring_client_test.IncludeKpi(_include_kpi_request)

                # self.monitoring_client.IncludeKpi(kpi_security_status)
                # self.monitoring_client.IncludeKpi(kpi_conf)
                # self.monitoring_client.IncludeKpi(kpi_unique_attack_conns)
                # self.monitoring_client.IncludeKpi(kpi_unique_compromised_clients)
                # self.monitoring_client.IncludeKpi(kpi_unique_attackers)
    """
    Classify connection as standard traffic or cryptomining attack and return results
        -input: 
            + request: L3CentralizedattackdetectorMetrics object with connection features information
        -output: L3AttackmitigatorOutput object with information about the assigned class and prediction confidence
    """
ldemarcosm's avatar
ldemarcosm committed
    def make_inference(self, request):
        x_data = np.array(
            [
ldemarcosm's avatar
ldemarcosm committed
                [
                    request.c_pkts_all,
                    request.c_ack_cnt,
                    request.c_bytes_uniq,
                    request.c_pkts_data,
                    request.c_bytes_all,
                    request.s_pkts_all,
                    request.s_ack_cnt,
                    request.s_bytes_uniq,
                    request.s_pkts_data,
                    request.s_bytes_all,
ldemarcosm's avatar
ldemarcosm committed
                ]
        predictions = self.model.run([self.prob_name], {self.input_name: x_data.astype(np.float32)})[0]

        # Gather the predicted class, the probability of that class and other relevant information required to block the attack
ldemarcosm's avatar
ldemarcosm committed
        output_message = {
            "confidence": None,
            "timestamp": datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
            "ip_o": request.ip_o,
ldemarcosm's avatar
ldemarcosm committed
            "tag_name": None,
            "tag": None,
            "flow_id": request.flow_id,
            "protocol": request.protocol,
ldemarcosm's avatar
ldemarcosm committed
            "port_d": request.port_d,
            "ml_id": "RandomForest",
            "endpoint_id": request.endpoint_id,
ldemarcosm's avatar
ldemarcosm committed
            "time_start": request.time_start,
            "time_end": request.time_end,
        }
        if predictions[0][1] >= self.CLASSIFICATION_THRESHOLD:
ldemarcosm's avatar
ldemarcosm committed
            output_message["confidence"] = predictions[0][1]
            output_message["tag_name"] = "Crypto"
            output_message["tag"] = self.CRYPTO_CLASS
ldemarcosm's avatar
ldemarcosm committed
        else:
            output_message["confidence"] = predictions[0][0]
            output_message["tag_name"] = "Normal"
            output_message["tag"] = self.NORMAL_CLASS
ldemarcosm's avatar
ldemarcosm committed

        return output_message
ldemarcosm's avatar
ldemarcosm committed

    """
    Receive features from Attack Mitigator, predict attack and communicate with Attack Mitigator
        -input: 
            + request: L3CentralizedattackdetectorMetrics object with connection features information
        -output: Empty object with a message about the execution of the function
    """
    def SendInput(self, request, context):
        # Store the data sent in the request
        # Protobuff messages are NOT pickable, so we need to serialize them first
        # self.inference_values.put({"request": request, "timestamp": datetime.now()})
        # Perform inference with the data sent in the request
        logging.info("Performing inference...")
        cryptomining_detector_output = self.make_inference(request)
        logging.info("Inference performed correctly")
        # Store the results of the inference that will be later used to monitor the KPIs
        # Protobuff messages are NOT pickable, so we need to serialize them first
        cryptomining_detector_output_serialized = copy.deepcopy(cryptomining_detector_output)
        cryptomining_detector_output_serialized["service_id"] = MessageToJson(
            request.service_id, preserving_proto_field_name=True
        )
        cryptomining_detector_output_serialized["endpoint_id"] = MessageToJson(
            request.endpoint_id, preserving_proto_field_name=True
        )

        self.inference_results.put({"output": cryptomining_detector_output_serialized, "timestamp": datetime.now()})
        service_id = request.service_id
        device_id = request.endpoint_id.device_id
        endpoint_id = request.endpoint_id
        # Check if a request of a new service has been received and, if so, create the monitored KPIs for that service
        if service_id not in self.service_ids:
            self.create_kpis(service_id, device_id, endpoint_id)
            self.service_ids.append(service_id)
            self.monitored_service_ids.put(MessageToJson(service_id, preserving_proto_field_name=True))
        # Only notify Attack Mitigator when a cryptomining connection has been detected
        if cryptomining_detector_output["tag_name"] == "Crypto":
            logging.info("Crypto attack detected")

            # Notify the Attack Mitigator component about the attack
            logging.info(
                "Notifying the Attack Mitigator component about the attack in order to block the connection..."
            )

                logging.info("Sending the connection information to the Attack Mitigator component...")
                message = L3AttackmitigatorOutput(**cryptomining_detector_output)
                response = self.attackmitigator_client.SendOutput(message)
                # logging.info("Attack Mitigator notified and received response: ", response.message)  # FIX No message received
                logging.info("Attack Mitigator notified")

                return Empty(message="OK, information received and mitigator notified abou the attack")
            except Exception as e:
                logging.error("Error notifying the Attack Mitigator component about the attack: ", e)
                logging.error("Couldn't find l3_attackmitigator")

                return Empty(message="Attack Mitigator not found")
            logging.info("No attack detected")

            return Empty(message="Ok, information received (no attack detected)")
ldemarcosm's avatar
ldemarcosm committed
    def GetOutput(self, request, context):
        logging.info("Returning inference output...")
        k = np.multiply(self.inference_values, [2])
ldemarcosm's avatar
ldemarcosm committed
        k = np.sum(k)
ldemarcosm's avatar
ldemarcosm committed
        return self.make_inference(k)