Skip to content
Snippets Groups Projects
Service_Handler_Methods.py 4.34 KiB
Newer Older
  • Learn to ignore specific revisions
  • Lluis Gifre Renom's avatar
    Lluis Gifre Renom committed
    # Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #      http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    import datetime, re
    from typing import Dict, List, Tuple
    from .tools.FileSystem import create_folders
    from .tools.HistogramData import HistogramData
    from .tools.Plotter import plot_histogram
    from .tools.Prometheus import get_prometheus_range, get_prometheus_series_names
    from .tools.Histogram import results_to_histograms, save_histograms, unaccumulate_histograms
    
    ##### EXPERIMENT SETTINGS ##############################################################################################
    
    
    Lluis Gifre Renom's avatar
    Lluis Gifre Renom committed
    from .experiments.Emu_Onboard import EXPERIMENT_NAME, EXPERIMENT_ID, TIME_START, TIME_END
    #from .experiments.L2NM_EMU_Service import EXPERIMENT_NAME, EXPERIMENT_ID, TIME_START, TIME_END
    #from .experiments.L3NM_EMU_Service import EXPERIMENT_NAME, EXPERIMENT_ID, TIME_START, TIME_END
    
    Lluis Gifre Renom's avatar
    Lluis Gifre Renom committed
    TIME_STEP       = '1m'
    LABEL_FILTERS   = {
        #'handler': 'l2nm_emulated',
    }
    
    ##### ENVIRONMENT SETTINGS #############################################################################################
    
    PROM_ADDRESS = '127.0.0.1'
    PROM_PORT    = 9090
    OUT_FOLDER   = 'data/perf/'
    
    ##### PLOT-SPECIFIC CUSTOMIZATIONS #####################################################################################
    
    EXPERIMENT_ID  += '/svc-hdl-methods'
    SERIES_MATCH   = 'tfs_service_handler_.+_histogram_duration_bucket'
    RE_SERIES_NAME = re.compile(r'^tfs_service_handler_(.+)_histogram_duration_bucket$')
    SERIES_LABELS  = ['handler']
    
    def update_keys(handler : str, method : str) -> Tuple[Tuple, Tuple]:
        collection_keys = (handler,)
        histogram_keys = (method,)
        return collection_keys, histogram_keys
    
    def get_plot_specs(folders : Dict[str, str], handler : str) -> Tuple[str, str]:
    
    Lluis Gifre Renom's avatar
    Lluis Gifre Renom committed
        title = 'Service Handler - {:s} [{:s}]'.format(handler.title(), EXPERIMENT_NAME)
    
    Lluis Gifre Renom's avatar
    Lluis Gifre Renom committed
        filepath = '{:s}/{:s}.png'.format(folders['png'], handler)
        return title, filepath
    
    ##### AUTOMATED CODE ###################################################################################################
    
    def get_series_names(folders : Dict[str, str]) -> List[str]:
        series_names = get_prometheus_series_names(
            PROM_ADDRESS, PROM_PORT, SERIES_MATCH, TIME_START, TIME_END,
            raw_json_filepath='{:s}/_series.json'.format(folders['json'])
        )
        return series_names
    
    def get_histogram_data(series_name : str, folders : Dict[str, str]) -> Dict[Tuple, HistogramData]:
        m = RE_SERIES_NAME.match(series_name)
        if m is None:
            # pylint: disable=broad-exception-raised
            raise Exception('Unparsable series name: {:s}'.format(str(series_name)))
        extra_labels = m.groups()
        results = get_prometheus_range(
            PROM_ADDRESS, PROM_PORT, series_name, LABEL_FILTERS, TIME_START, TIME_END, TIME_STEP,
            raw_json_filepath='{:s}/_raw_{:s}.json'.format(folders['json'], series_name)
        )
        histograms = results_to_histograms(results, SERIES_LABELS, extra_labels=extra_labels)
        unaccumulate_histograms(histograms, process_bins=True, process_timestamps=False)
        save_histograms(histograms, folders['csv'])
        return histograms
    
    def main() -> None:
        histograms_collection : Dict[Tuple, Dict[Tuple, HistogramData]] = dict()
    
        folders = create_folders(OUT_FOLDER, EXPERIMENT_ID)
        series_names = get_series_names(folders)
    
        for series_name in series_names:
            histograms = get_histogram_data(series_name, folders)
            for histogram_keys, histogram_data in histograms.items():
                collection_keys,histogram_keys = update_keys(*histogram_keys)
                histograms = histograms_collection.setdefault(collection_keys, dict())
                histograms[histogram_keys] = histogram_data
    
        for histogram_keys,histograms in histograms_collection.items():
            title, filepath = get_plot_specs(folders, *histogram_keys)
            plot_histogram(histograms, filepath, title=title)
    
    if __name__ == '__main__':
        main()