Newer
Older
/*
* Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <glib.h>
#include <sys/time.h>
#include <ctype.h>
#include <strings.h>
#include <time.h>
#include <math.h>
#include <fcntl.h>
#include <uuid/uuid.h>
#include <errno.h>
#include "pathComp_log.h"
#include "pathComp.h"
#include "pathComp_tools.h"
gint numPathCompIntents = 0; // number of events triggering the path computation
//gint numSuccesPathComp = 0; // number of events resulting in succesfully path computations fulfilling the constraints
struct timeval total_path_comp_time;
gdouble totalReqBw = 0.0;
gdouble totalServedBw = 0.0;
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function for time processing
*
* @param a
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
struct timeval tv_adjust (struct timeval a) {
while (a.tv_usec >= 1000000) {
a.tv_usec -= 1000000;
a.tv_sec++;
}
while (a.tv_usec < 0) {
a.tv_usec += 1000000;
a.tv_sec--;
}
return a;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief friendly function to copy safely strings
*
* @param dst
* @param src
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
void duplicate_string(gchar* dst, gchar* src) {
strcpy(dst, src);
dst[strlen(dst)] = '\0';
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to print the computed the path
*
* @param path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path (struct compRouteOutputItem_t *p) {
DEBUG_PC ("=========== COMPUTED PATH =======================");
DEBUG_PC ("E2E Avail. Bw: %f, Latency: %f, Cost: %f, Consumed Power (in W): %f", p->availCap, p->delay, p->cost, p->power);
for (gint k = 0; k < p->numRouteElements; k++) {
DEBUG_PC ("%s[%s] --> %s[%s]", p->routeElement[k].aNodeId.nodeId, p->routeElement[k].aEndPointId,
p->routeElement[k].zNodeId.nodeId, p->routeElement[k].zEndPointId);
DEBUG_PC("\t linkId: %s", p->routeElement[k].linkId);
DEBUG_PC("\t aTopologyId: %s", p->routeElement[k].aTopologyId);
DEBUG_PC("\t zTopologyId: %s", p->routeElement[k].zTopologyId);
}
DEBUG_PC ("==================================================================");
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to print the output path formed by link Ids
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path_t(struct path_t* p) {
g_assert(p);
DEBUG_PC(" ============ COMPUTED OUTPUT PATH =================");
DEBUG_PC("Path AvailBw: %f, Cost: %f, Latency: %f, Power: %f", p->path_capacity.value,
p->path_cost.cost_value, p->path_latency.fixed_latency, p->path_power.power);
DEBUG_PC("number of links of path %d", p->numPathLinks);
for (gint k = 0; k < p->numPathLinks; k++) {
DEBUG_PC("Link: %s", p->pathLinks[k].linkId);
for (gint l = 0; l < p->pathLinks[k].numLinkTopologies; l++) {
DEBUG_PC("end Link [%d] TopologyId: %s", l, p->pathLinks[k].linkTopologies[l].topologyId);
DEBUG_PC(" ContextId: %s", p->pathLinks[k].topologyId.contextId);
DEBUG_PC(" TopologyUUid: %s", p->pathLinks[k].topologyId.topology_uuid);
DEBUG_PC(" aDeviceId: %s", p->pathLinks[k].aDeviceId);
DEBUG_PC(" aEndpointId: %s", p->pathLinks[k].aEndPointId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used allocate memory for struct path_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
struct path_t* create_path() {
struct path_t* p = g_malloc0(sizeof(struct path_t));
if (p == NULL) {
DEBUG_PC("Memory allocation failure");
exit(-1);
}
return(p);
}
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Returns the char (36 bytes) format of a uuid
*
* @param uuid
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gchar* get_uuid_char(uuid_t uuid) {
gchar* uuidChar = g_malloc0(16); // uuid has 36 chars
if (uuidChar == NULL) {
DEBUG_PC("Memory Allocation failure");
exit(-1);
}
uuid_unparse(uuid, (char *)uuidChar);
return uuidChar;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Makes a copy of the service identifier (including the context)
*
* @param o
* @param i
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_service_id(struct serviceId_t* o, struct serviceId_t* i) {
memcpy(o->contextId, i->contextId, sizeof(i->contextId));
memcpy(o->service_uuid, i->service_uuid, sizeof(i->service_uuid));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Makes a copy of the service endpoint identifier (including the topology (contect and topology id), device and endpoint (port))
*
* @param oEp
* @param iEp
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_service_endpoint_id(struct service_endpoints_id_t* oEp, struct service_endpoints_id_t* iEp) {
// copy topology information
memcpy(oEp->topology_id.contextId, iEp->topology_id.contextId, sizeof(iEp->topology_id.contextId));
memcpy(oEp->topology_id.topology_uuid, iEp->topology_id.topology_uuid, sizeof(iEp->topology_id.topology_uuid));
// copy the endpoint
memcpy(oEp->device_uuid, iEp->device_uuid, sizeof(iEp->device_uuid));
memcpy(oEp->endpoint_uuid, iEp->endpoint_uuid, sizeof(iEp->endpoint_uuid));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief From the set of contexts, it is returned the graph associated to that context matching
* with the passed contextId.
*
* @param Set
* @param contextId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct graph_t* get_graph_by_contextId(GList* set, gchar* contextId) {
g_assert(contextId);
// iterate over the set of context. Pick the one matching with contextId, and return the graph.
// If not found, return NULL
struct graph_t* g = NULL;
for (GList *ln = g_list_first(set);
ln;
ln = g_list_next(ln)){
struct context_t* context = (struct context_t*)(ln->data);
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
if (strcmp(context->contextId, contextId) == 0) {
g = &(context->g);
return g;
}
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Process the service constraint and maps them into the path constraints
* to be fulfilled
*
* @param path_constraints
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct path_constraints_t * get_path_constraints(struct service_t* s) {
g_assert(s);
struct path_constraints_t* path_constraints = g_malloc0(sizeof(struct path_constraints_t));
if (path_constraints == NULL) {
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
char* eptr;
for (gint i = 0; i < s->num_service_constraints; i++) {
struct constraint_t* constraint = &(s->constraints[i]);;
if (strncmp((const char*)constraint->constraint_type, "bandwidth", 9) == 0) {
path_constraints->bwConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->bw = TRUE;
//DEBUG_PC("Path Constraint Bw: %f", path_constraints->bwConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "cost", 4) == 0) {
path_constraints->costConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->cost = TRUE;
//DEBUG_PC("Path Constraint Cost: %f", path_constraints->costConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "latency", 7) == 0) {
path_constraints->latencyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->latency = TRUE;
//DEBUG_PC("Path Constraint Latency: %f", path_constraints->latencyConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "energy", 6) == 0) {
path_constraints->energyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->energy = TRUE;
//DEBUG_PC("Path Constraint Energy: %f", path_constraints->energyConstraint);
}
}
return path_constraints;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Creates the predecessors to keep the computed path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct pred_t *predecessors = g_malloc0 (sizeof (struct pred_t));
DEBUG_PC ("memory allocation failed\n");
exit (-1);
}
return predecessors;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief create edge
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* e = g_malloc0(sizeof(struct edges_t));
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
DEBUG_PC("Memory allocation failed\n");
exit(-1);
}
return e;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Prints the list of the predecessors for a given computed Shortest Path
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_predecessors (struct pred_t *p)
{
g_assert (p);
DEBUG_PC ("Number of Predecessors: %d", p->numPredComp);
for (gint i = 0; i < p->numPredComp; i++) {
struct pred_comp_t *pComp = &(p->predComp[i]);
DEBUG_PC ("deviceId: %s", pComp->v.nodeId);
struct edges_t *e = &(pComp->e);
DEBUG_PC("Edge[#%d] (linkId): %s", i, e->linkId);
DEBUG_PC ("\t %s[%s] ===>", e->aNodeId.nodeId, e->aEndPointId);
DEBUG_PC("\t %s[%s]", e->zNodeId.nodeId, e->zEndPointId);
DEBUG_PC("\t aTopologyId: %s", e->aTopologyId);
DEBUG_PC("\t zTopologyId: %s", e->zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Builds the list of predecessors for the request destination using the computed Shortest Path
* being stored in map
*
* @param p
* @param s
* @param map
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_predecessors (struct pred_t *p, struct service_t *s, struct map_nodes_t *map) {
g_assert (p); g_assert (s); g_assert (map);
struct nodes_t *v = create_node();
duplicate_string(v->nodeId, s->service_endpoints_id[1].device_uuid);
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
get_edge_from_map_by_node (e, v, map);
// Get u (being source of edge e)
struct nodes_t u;
duplicate_node_id (&e->aNodeId, &u);
// Add to the predecessors list
struct pred_comp_t *pred = &(p->predComp[p->numPredComp]);
duplicate_node_id (&u, &pred->v);
struct edges_t *e1 = &(pred->e);
duplicate_edge (e1, e);
p->numPredComp++;
// Back-trace edges till reaching the srcPEId
struct nodes_t* srcNode = create_node();
duplicate_string(srcNode->nodeId, s->service_endpoints_id[0].device_uuid);
while (compare_node_id (&u, srcNode) != 0) {
duplicate_node_id (&u, v);
get_edge_from_map_by_node (e, v, map);
// Get the u (being source of edge e)
duplicate_node_id (&e->aNodeId, &u);
// Get the new predecessor
struct pred_comp_t *pred = &p->predComp[p->numPredComp];
// Add to the predecessors list
duplicate_node_id (&u, &pred->v);
struct edges_t *e1 = &(pred->e);
duplicate_edge (e1, e);
p->numPredComp++;
}
print_predecessors (p);
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief It creates a struct nodes_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct nodes_t * create_node ()
{
struct nodes_t *n = g_malloc0 (sizeof (struct nodes_t));
if (n == NULL) {
DEBUG_PC ("memory allocation problem");
exit (-1);
}
return n;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief It creates a routeElement_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct routeElement_t *rE = g_malloc0 (sizeof (struct routeElement_t));
DEBUG_PC ("memory allocation problem");
exit (-1);
}
return rE;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief copy node ids
*
* @param src
* @param dst
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_node_id (struct nodes_t *src, struct nodes_t *dst) {
g_assert (src);
//DEBUG_PC ("Duplicate nodeId for %s", src->nodeId);
strcpy (dst->nodeId, src->nodeId);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief compares a pair of node Ids
*
* @param a
* @param b
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint compare_node_id (struct nodes_t *a, struct nodes_t *b) {
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
g_assert (a);
g_assert (b);
return (memcmp (&a->nodeId, b->nodeId, strlen (b->nodeId)));
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief duplicate two routeElement_t
*
* @param src
* @param dst
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_routeElement (struct routeElement_t *src, struct routeElement_t *dst)
{
g_assert (src);
g_assert (dst);
duplicate_node_id (&(src->aNodeId), &(dst->aNodeId));
duplicate_node_id (&(src->zNodeId), &(dst->zNodeId));
duplicate_string(dst->aEndPointId, src->aEndPointId);
duplicate_string(dst->zEndPointId, src->zEndPointId);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief duplicate two edges
*
* @param e1 (destination)
* @param e2 (source)
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_edge (struct edges_t *e1, struct edges_t *e2) {
duplicate_node_id (&e2->aNodeId, &e1->aNodeId);
duplicate_node_id (&e2->zNodeId, &e1->zNodeId);
//DEBUG_PC ("e->aNodeId: %s ---> e->zNodeId: %s", e1->aNodeId.nodeId, e1->zNodeId.nodeId);
duplicate_string(e1->aEndPointId, e2->aEndPointId);
duplicate_string(e1->zEndPointId, e2->zEndPointId);
duplicate_string(e1->linkId, e2->linkId);
duplicate_string(e1->interDomain_localId, e2->interDomain_localId);
duplicate_string(e1->interDomain_remoteId, e2->interDomain_remoteId);
duplicate_string(e1->aTopologyId, e2->aTopologyId);
duplicate_string(e1->zTopologyId, e2->zTopologyId);
e1->unit = e2->unit;
memcpy(&e1->totalCap, &e2->totalCap, sizeof(gdouble));
memcpy(&e1->availCap, &e2->availCap, sizeof(gdouble));
memcpy (&e1->cost, &e2->cost, sizeof (gdouble));
memcpy (&e1->delay, &e2->delay, sizeof (gdouble));
memcpy(&e1->energy, &e2->energy, sizeof(gdouble));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate path
*
* @param a - original
* @param b - copy
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path (struct compRouteOutputItem_t *a, struct compRouteOutputItem_t *b) {
g_assert (a); g_assert (b);
memcpy(&b->availCap, &a->availCap, sizeof (gdouble));
memcpy(&b->cost, &a->cost, sizeof(gdouble));
memcpy(&b->delay, &a->delay, sizeof (gdouble));
memcpy(&b->power, &a->power, sizeof(gdouble));
b->numRouteElements = a->numRouteElements;
for (gint k = 0; k < a->numRouteElements; k++) {
//DEBUG_PC ("aNodeId: %s // zNodeId: %s", a->routeElement[k].aNodeId.nodeId, a->routeElement[k].zNodeId.nodeId);
// aNodeId duplication
struct nodes_t *n1 = &(a->routeElement[k].aNodeId);
struct nodes_t *n2 = &(b->routeElement[k].aNodeId);
//zNodeId duplication
n1 = &(a->routeElement[k].zNodeId);
n2 = &(b->routeElement[k].zNodeId);
duplicate_node_id (n1, n2);
duplicate_string(b->routeElement[k].aEndPointId, a->routeElement[k].aEndPointId);
duplicate_string(b->routeElement[k].zEndPointId, a->routeElement[k].zEndPointId);
duplicate_string(b->routeElement[k].linkId, a->routeElement[k].linkId);
duplicate_string(b->routeElement[k].aTopologyId, a->routeElement[k].aTopologyId);
duplicate_string(b->routeElement[k].zTopologyId, a->routeElement[k].zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate path from compRouteOutputItem_t to path_t
*
* @param a - original
* @param b - copy
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path_t(struct compRouteOutputItem_t* a, struct path_t* b) {
g_assert(a); g_assert(b);
memcpy(&b->path_capacity.value, &a->availCap, sizeof(gdouble));
memcpy(&b->path_cost.cost_value, &a->cost, sizeof(gdouble));
memcpy(&b->path_latency.fixed_latency, &a->delay, sizeof(gdouble));
memcpy(&b->path_power.power, &a->power, sizeof(gdouble));
b->numPathLinks = a->numRouteElements;
for (gint k = 0; k < a->numRouteElements; k++) {
struct routeElement_t* rE = &(a->routeElement[k]);
struct pathLink_t* pL = &(b->pathLinks[k]);
// copy the aDeviceId and aEndpointId, zDeviceId and zEndPointId
duplicate_string(pL->aDeviceId, rE->aNodeId.nodeId);
duplicate_string(pL->zDeviceId, rE->zNodeId.nodeId);
duplicate_string(pL->aEndPointId, rE->aEndPointId);
duplicate_string(pL->zEndPointId, rE->zEndPointId);
duplicate_string(pL->topologyId.topology_uuid, rE->aTopologyId);
duplicate_string(pL->topologyId.contextId, rE->contextId);
//copy the linkId
duplicate_string(pL->linkId, rE->linkId);
pL->numLinkTopologies++;
duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->aTopologyId);
pL->numLinkTopologies++;
duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Return the index into mapN related nodeId
*
* @param nodeId
* @para mapN
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint get_map_index_by_nodeId (gchar *nodeId, struct map_nodes_t * mapN) {
gint i = 0;
for (i = 0; i < mapN->numMapNodes; i++) {
//DEBUG_PC ("i: %d; current: %s // targeted: %s", i, mapN->map[i].verticeId.nodeId, nodeId);
if (memcmp (mapN->map[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0) {
//DEBUG_PC ("Index: %d", i);
return i;
}
}
//DEBUG_PC ("Index: %d", index);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Get the edge e enabling reaching the computed v in mapNodes
*
* @param e
* @param v
* @param mapN
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_map_by_node (struct edges_t *e, struct nodes_t* v, struct map_nodes_t *mapN) {
//DEBUG_PC ("Get the Edge into map from node v: %s", v.nodeId);
// Get the edge reaching the node v from mapNodes
gint map_vIndex = get_map_index_by_nodeId (v->nodeId, mapN);
//DEBUG_PC ("aNodeId: %s --> zNodeId: %s", mapN->map[map_vIndex].predecessor.aNodeId.nodeId, mapN->map[map_vIndex].predecessor.zNodeId.nodeId);
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
struct edges_t *te = &(mapN->map[map_vIndex].predecessor);
duplicate_edge (e, te);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Get the edge from the predecessors array for a given node n
*
* @param e
* @param n
* @param predecessors
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_predecessors (struct edges_t *e, struct nodes_t* n, struct pred_t *predecessors) {
g_assert(predecessors);
DEBUG_PC ("Get edge outgoing node %s from predecessors list", n->nodeId);
//print_predecessors (predecessors);
for (gint i = 0; i < predecessors->numPredComp; i++) {
struct pred_comp_t *pred = &(predecessors->predComp[i]);
if (compare_node_id (n, &pred->v) == 0) {
// Add to the predecessors list
struct edges_t *te = &(pred->e);
DEBUG_PC("add e (linkId): %s", te->linkId);
duplicate_edge (e, te);
return;
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Construct the path using the predecessors list
*
* @param path
* @param predecessors
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_path (struct compRouteOutputItem_t *p, struct pred_t *predecessors, struct service_t *s) {
// Get the source device Id of the network connectivity service
struct nodes_t *v = create_node();
duplicate_string(v->nodeId, s->service_endpoints_id[0].device_uuid);
// Get the edge for v in predecessors
get_edge_from_predecessors (e, v, predecessors);
// Get the target for e
struct nodes_t u;
duplicate_node_id (&e->zNodeId, &u);
//DEBUG_PC ("u: %s", u.nodeId);
struct path_constraints_t* pathCons = get_path_constraints(s);
// Add route element to the path being constructed
gint k = 0;
duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
duplicate_string(p->routeElement[k].linkId, e->linkId);
duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);
p->numRouteElements++;
struct nodes_t* dst = create_node();
duplicate_string(dst->nodeId, s->service_endpoints_id[1].device_uuid);
duplicate_node_id (&u, v);
get_edge_from_predecessors (e, v, predecessors);
// Get the target u
duplicate_node_id (&e->zNodeId, &u);
// Add route element to the path being constructed
duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
duplicate_string(p->routeElement[k].linkId, e->linkId);
duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);
}
g_free(e); g_free(v); g_free(pathCons);
//DEBUG_PC ("Path is constructed");
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Print the graph for DEBUG_PCging purposes
*
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
DEBUG_PC ("================================================================");
DEBUG_PC ("=========================== GRAPH ==========================");
DEBUG_PC ("================================================================");
DEBUG_PC ("Head Vertice [%s]", g->vertices[i].verticeId.nodeId);
for (gint j = 0; j < g->vertices[i].numTargetedVertices; j++)
{
DEBUG_PC (" Tail Vertice: %s", g->vertices[i].targetedVertices[j].tVertice.nodeId);
for (gint k = 0; k < g->vertices[i].targetedVertices[j].numEdges; k++)
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
{
struct edges_t *e = &(g->vertices[i].targetedVertices[j].edges[k]);
DEBUG_PC ("%s(%s) --> %s(%s) [C: %f, Bw: %f b/s, Delay: %f ms]", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId,
e->zEndPointId, e->cost, e->availCap, e->delay);
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look for a given edge into the graph
*
* @param verticeIndex
* @param targetedVerticeIndex
* @param e
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_edge_lookup (gint verticeIndex, gint targetedVerticeIndex, struct edges_t *e, struct graph_t *g) {
gint indexEdge = -1;
for (gint j = 0; j < g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].numEdges; j++) {
struct edges_t *e2 = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].edges[j]);
if ((compare_node_id (&e->aNodeId, &e2->aNodeId) == 0) &&
(compare_node_id (&e->zNodeId, &e2->zNodeId) == 0) &&
(strcmp (e->aEndPointId, e2->aEndPointId) == 0) &&
(strcmp (e->zEndPointId, e2->zEndPointId) == 0) &&
(strcmp(e->linkId, e2->linkId) == 0)) {
DEBUG_PC ("%s (%s) --> %s (%s) [linkId: %s] FOUND in the Graph at index: %d", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId,
e->zEndPointId, e->linkId, j);
indexEdge = j;
return indexEdge;
}
}
return indexEdge;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look for a given vertice within the graph using the nodeId
*
* @param nodeId
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_vertice_lookup (gchar *nodeId, struct graph_t *g)
{
gint index = -1;
//DEBUG_PC("Searching Node: %s", nodeId);
for (gint i = 0; i < g->numVertices; i++) {
//DEBUG_PC("Checked Graph Node: %s", g->vertices[i].verticeId.nodeId);
if (memcmp (g->vertices[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0)
{
index = i;
//DEBUG_PC ("%s is found in the graph vertice [%d]", nodeId, index);
break;
}
}
return (index);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice
*
* @param nodeId
* @param vIndex
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_lookup (gint vIndex, gchar *nodeId, struct graph_t *g)
{
gint addedTargetedVerticeIndex = -1;
gint i = 0;
if (g->vertices[vIndex].numTargetedVertices == 0)
{
return (addedTargetedVerticeIndex);
}
for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
{
if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
{
DEBUG_PC ("Targeted %s reachable from %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = i;
return (addedTargetedVerticeIndex);
}
}
// not found ...
return (addedTargetedVerticeIndex);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice, if not to be added
*
* @param nodeId
* @param vIndex
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_add (gint vIndex, gchar *nodeId, struct graph_t *g)
{
gint addedTargetedVerticeIndex = -1;
gint i = 0;
if (g->vertices[vIndex].numTargetedVertices == 0)
{
//DEBUG_PC ("targeted vertice %s being reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = 0;
return (addedTargetedVerticeIndex);
}
for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
{
if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
{
//DEBUG_PC ("Targeted vertice %s is already considered in the reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = -1;
return (addedTargetedVerticeIndex);
}
}
// It is not found, next to be added at i position
addedTargetedVerticeIndex = i;
return (addedTargetedVerticeIndex);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove edge from the graph
*
* @param g
* @param e
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
void remove_edge_from_graph (struct graph_t *g, struct edges_t *e) {
// Find the ingress vertice into the graph
DEBUG_PC ("Removing from Graph %s[%s]) ---> %s[%s] (linkId: %s)", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, e->aEndPointId, e->linkId);
gint verticeIndex = -1;
verticeIndex = graph_vertice_lookup (e->aNodeId.nodeId, g);
if (verticeIndex == -1) {
DEBUG_PC ("Edge w/ %s is NOT in the Graph!!", e->aNodeId.nodeId);
return;
}
// Find the targeted vertice from vertice Id
gint targetedVerticeIndex = -1;
targetedVerticeIndex = graph_targeted_vertice_lookup (verticeIndex, e->zNodeId.nodeId, g);
if (targetedVerticeIndex == -1) {
DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
return;
//DEBUG_PC ("%s --> %s found in the Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);
// Get the edge position
gint edgeIndex = -1;
edgeIndex = graph_edge_lookup (verticeIndex, targetedVerticeIndex, e, g);
DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
return;
}
//DEBUG_PC ("%s --> %s FOUND in Graph w/ edgeIndex: %d", e->aNodeId.nodeId, e->zNodeId.nodeId, edgeIndex);