Newer
Older
# Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from confluent_kafka import Producer, KafkaException
from confluent_kafka.admin import AdminClient, NewTopic
import requests
import time
import threading
class KafkaNodeExporterProducer:
"""
Class to fetch metrics from Node Exporter and produce them to Kafka.
"""
def __init__(self, bootstrap_servers, node_exporter_endpoint, kafka_topic, run_duration, fetch_interval):
"""
Constructor to initialize Kafka producer parameters.
Args:
bootstrap_servers (str): Kafka broker address.
node_exporter_endpoint (str): Node Exporter metrics endpoint.
kafka_topic (str): Kafka topic to produce metrics to.
run_interval (int): Time interval in seconds to run the producer.
"""
self.node_exporter_endpoint = node_exporter_endpoint
self.kafka_topic = kafka_topic
self.run_duration = run_duration
self.fetch_interval = fetch_interval
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def fetch_metrics(self):
"""
Method to fetch metrics from Node Exporter.
Returns:
str: Metrics fetched from Node Exporter.
"""
try:
response = requests.get(self.node_exporter_endpoint)
if response.status_code == 200:
print(f"Metrics fetched sucessfully...")
return response.text
else:
print(f"Failed to fetch metrics. Status code: {response.status_code}")
return None
except Exception as e:
print(f"Failed to fetch metrics: {str(e)}")
return None
def delivery_callback(self, err, msg):
"""
Callback function to handle message delivery status.
Args:
err (KafkaError): Kafka error object.
msg (Message): Kafka message object.
"""
if err:
print(f'Message delivery failed: {err}')
else:
print(f'Message delivered to topic {msg.topic()}')
def create_topic_if_not_exists(self, admin_client):
"""
Method to create Kafka topic if it does not exist.
Args:
admin_client (AdminClient): Kafka admin client.
"""
try:
topic_metadata = admin_client.list_topics(timeout=5)
if self.kafka_topic not in topic_metadata.topics:
# If the topic does not exist, create a new topic
print(f"Topic '{self.kafka_topic}' does not exist. Creating...")
new_topic = NewTopic(self.kafka_topic, num_partitions=1, replication_factor=1)
admin_client.create_topics([new_topic])
except KafkaException as e:
print(f"Failed to create topic: {e}")
def produce_metrics(self):
"""
Method to continuously produce metrics to Kafka topic.
"""
conf = {
'bootstrap.servers': self.bootstrap_servers,
}
admin_client = AdminClient(conf)
self.create_topic_if_not_exists(admin_client)
kafka_producer = Producer(conf)
try:
start_time = time.time()
while True:
metrics = self.fetch_metrics()
if metrics:
kafka_producer.produce(self.kafka_topic, metrics.encode('utf-8'), callback=self.delivery_callback)
kafka_producer.flush()
print("Metrics produced to Kafka topic")
# Check if the specified run duration has elapsed
if time.time() - start_time >= self.run_duration:
break
# waiting time until next fetch
time.sleep(self.fetch_interval)
except KeyboardInterrupt:
print("Keyboard interrupt detected. Exiting...")
finally:
kafka_producer.flush()
# kafka_producer.close() # this command generates ERROR
def start_producer_thread(self):
"""
Method to start the producer thread.
"""
producer_thread = threading.Thread(target=self.produce_metrics)
producer_thread.start()