Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from confluent_kafka import Producer, KafkaException
from confluent_kafka.admin import AdminClient, NewTopic
import requests
import time
import threading
class KafkaNodeExporterProducer:
"""
Class to fetch metrics from Node Exporter and produce them to Kafka.
"""
def __init__(self, bootstrap_servers, node_exporter_endpoint, kafka_topic, run_duration, fetch_interval):
"""
Constructor to initialize Kafka producer parameters.
Args:
bootstrap_servers (str): Kafka broker address.
node_exporter_endpoint (str): Node Exporter metrics endpoint.
kafka_topic (str): Kafka topic to produce metrics to.
run_interval (int): Time interval in seconds to run the producer.
"""
self.bootstrap_servers = bootstrap_servers
self.node_exporter_endpoint = node_exporter_endpoint
self.kafka_topic = kafka_topic
self.run_duration = run_duration
self.fetch_interval = fetch_interval
def fetch_metrics(self):
"""
Method to fetch metrics from Node Exporter.
Returns:
str: Metrics fetched from Node Exporter.
"""
try:
response = requests.get(self.node_exporter_endpoint)
if response.status_code == 200:
print(f"Metrics fetched sucessfully...")
return response.text
else:
print(f"Failed to fetch metrics. Status code: {response.status_code}")
return None
except Exception as e:
print(f"Failed to fetch metrics: {str(e)}")
return None
def delivery_callback(self, err, msg):
"""
Callback function to handle message delivery status.
Args:
err (KafkaError): Kafka error object.
msg (Message): Kafka message object.
"""
if err:
print(f'Message delivery failed: {err}')
else:
print(f'Message delivered to topic {msg.topic()}')
def create_topic_if_not_exists(self, admin_client):
"""
Method to create Kafka topic if it does not exist.
Args:
admin_client (AdminClient): Kafka admin client.
"""
try:
topic_metadata = admin_client.list_topics(timeout=5)
if self.kafka_topic not in topic_metadata.topics:
# If the topic does not exist, create a new topic
print(f"Topic '{self.kafka_topic}' does not exist. Creating...")
new_topic = NewTopic(self.kafka_topic, num_partitions=1, replication_factor=1)
admin_client.create_topics([new_topic])
except KafkaException as e:
print(f"Failed to create topic: {e}")
def produce_metrics(self):
"""
Method to continuously produce metrics to Kafka topic.
"""
conf = {
'bootstrap.servers': self.bootstrap_servers,
}
admin_client = AdminClient(conf)
self.create_topic_if_not_exists(admin_client)
kafka_producer = Producer(conf)
try:
start_time = time.time()
while True:
metrics = self.fetch_metrics()
if metrics:
kafka_producer.produce(self.kafka_topic, metrics.encode('utf-8'), callback=self.delivery_callback)
kafka_producer.flush()
print("Metrics produced to Kafka topic")
# Check if the specified run duration has elapsed
if time.time() - start_time >= self.run_duration:
break
# waiting time until next fetch
time.sleep(self.fetch_interval)
except KeyboardInterrupt:
print("Keyboard interrupt detected. Exiting...")
finally:
kafka_producer.flush()
# kafka_producer.close() # this command generates ERROR
def start_producer_thread(self):
"""
Method to start the producer thread.
"""
producer_thread = threading.Thread(target=self.produce_metrics)
producer_thread.start()