Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* find_vertex_in_graph_context(struct graph_t *g, gchar* deviceId) {
for (gint i = 0; i < g->numVertices; i++)
{
struct vertices_t* v = &(g->vertices[i]);
if (strcmp(v->verticeId.nodeId, deviceId) == 0) {
return v;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Adding a deviceId into a graph
*
* @param g
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* add_vertex_in_graph(struct graph_t* g, gchar* deviceId) {
g->numVertices++;
struct vertices_t* v = &(g->vertices[g->numVertices - 1]);
duplicate_string(v->verticeId.nodeId, deviceId);
return v;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Construct the graphs (vertices and edges) bound to every individual context
*
* @param cSet
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_deviceList(struct contextSet_t* cSet) {
// Check every device their endpoints
for (gint i = 0; i < deviceList->numDevices; i++) {
struct device_t* d = &(deviceList->devices[i]);
//DEBUG_PC("Exploring DeviceId: %s", d->deviceId);
// Check the associated endPoints
for (gint j = 0; j < d->numEndPoints; j++) {
struct endPoint_t* eP = &(d->endPoints[j]);
// Get endPointId (topology, context, device Id and endpoint uuid)
struct endPointId_t* ePid = &(eP->endPointId); //end point id
//DEBUG_PC(" EndPointId: %s || Type: %s", eP->endPointId.endpoint_uuid, d->deviceType);
//DEBUG_PC(" TopologyId: %s || ContextId: %s", eP->endPointId.topology_id.topology_uuid, eP->endPointId.topology_id.contextId);
// Add contextId in ContextSet and the deviceId (+endpoint) into the vertex set
struct context_t *c = find_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
if (c == NULL) {
//DEBUG_PC(" contextUuid: %s MUST BE ADDED to ContextSet", eP->endPointId.topology_id.contextId);
c = add_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
}
// Check if the deviceId and endPointUuid are already considered in the graph of the context c
struct vertices_t* v = find_vertex_in_graph_context(&c->g, d->deviceId);
if (v == NULL) {
//DEBUG_PC(" deviceId: %s MUST BE ADDED to the Context Graph", d->deviceId);
v = add_vertex_in_graph(&c->g, d->deviceId);
}
}
}
//print_contextSet(cSet);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Determine whether a deviceId is in the targetNode list of a specific vertex v
*
* @param v
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct targetNodes_t* find_targeted_vertex_in_graph_context(struct vertices_t* v, gchar *deviceId) {
for (gint k = 0; k < v->numTargetedVertices; k++) {
struct targetNodes_t* w = &(v->targetedVertices[k]);
if (strcmp(w->tVertice.nodeId, deviceId) == 0) {
return w;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add a deviceId a targetNode of a specific vertex v
*
* @param v
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct targetNodes_t* add_targeted_vertex_in_graph_context(struct vertices_t* v, gchar* bDeviceId) {
v->numTargetedVertices++;
struct targetNodes_t* w = &(v->targetedVertices[v->numTargetedVertices - 1]);
duplicate_string(w->tVertice.nodeId, bDeviceId);
return w;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Returns the structure of a device endpoint bound to a specific deviceId and endPointId
*
* @param devId
* @param endPointUuid
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct endPoint_t* find_device_tied_endpoint(gchar* devId, gchar* endPointUuid) {
//DEBUG_PC("devId: %s ePId: %s", devId, endPointUuid);
for (gint i = 0; i < deviceList->numDevices; i++) {
struct device_t* d = &(deviceList->devices[i]);
if (strcmp(d->deviceId, devId) != 0) {
continue;
}
// Iterate over the endpoints tied to the deviceId
for (gint j = 0; j < d->numEndPoints; j++) {
struct endPoint_t* eP = &(d->endPoints[j]);
//DEBUG_PC("looked endPointId: %s", eP->endPointId.endpoint_uuid);
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
if (strcmp(eP->endPointId.endpoint_uuid, endPointUuid) == 0) {
return eP;
}
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Adding the edge/linnk in the targetedNodes w list
*
* @param w
* @param l
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void add_edge_in_targetedVertice_set(struct targetNodes_t* w, struct link_t* l) {
//DEBUG_PC("\t targetedVertex: %s", w->tVertice.nodeId);
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
w->numEdges++;
struct edges_t* e = &(w->edges[w->numEdges - 1]);
// Copy the link Id UUID
duplicate_string(e->linkId, l->linkId);
// copy the deviceId and endpointsIds (A --> Z)
struct link_endpointId_t* aEndpointId = &(l->linkEndPointId[0]);
duplicate_string(e->aNodeId.nodeId, aEndpointId->deviceId);
duplicate_string(e->aEndPointId, aEndpointId->endPointId);
duplicate_string(e->aTopologyId, aEndpointId->topology_id.topology_uuid);
struct link_endpointId_t* zEndpointId = &(l->linkEndPointId[1]);
duplicate_string(e->zNodeId.nodeId, zEndpointId->deviceId);
duplicate_string(e->zEndPointId, zEndpointId->endPointId);
duplicate_string(e->zTopologyId, zEndpointId->topology_id.topology_uuid);
// The potential and available capacity is indeed retrieved using aEndpointId in the deviceList
struct endPoint_t* eP = find_device_tied_endpoint(aEndpointId->deviceId, aEndpointId->endPointId);
if (eP == NULL) {
DEBUG_PC("devId: %s endPointUuid: %s NOT in Device List!!--- Weird", aEndpointId->deviceId, aEndpointId->endPointId);
exit(-1);
}
//Potential(total) and available capacity
e->unit = eP->potential_capacity.unit;
memcpy(&e->totalCap, &eP->potential_capacity.value, sizeof(gdouble));
memcpy(&e->availCap, &eP->available_capacity.value, sizeof(gdouble));
// Copy interdomain local/remote Ids
memcpy(e->interDomain_localId, eP->inter_domain_plug_in.inter_domain_plug_in_local_id,
strlen(eP->inter_domain_plug_in.inter_domain_plug_in_local_id));
memcpy(e->interDomain_remoteId, eP->inter_domain_plug_in.inter_domain_plug_in_remote_id,
strlen(eP->inter_domain_plug_in.inter_domain_plug_in_remote_id));
// cost value
memcpy(&e->cost, &l->cost_characteristics.cost_value, sizeof(gdouble));
// latency
memcpy(&e->delay, &l->latency_characteristics.fixed_latency, sizeof(gdouble));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Searching a specific edge/link by the linkId(UUID)
*
* @param w
* @param l
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* find_edge_in_targetedVertice_set(struct targetNodes_t* w, struct link_t* l) {
for (gint i = 0; i < w->numEdges; i++) {
struct edges_t* e = &(w->edges[i]);
if (strcmp(e->linkId, l->linkId) == 0) {
return e;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief supporting the construction of the graph per context using the explicit
* contents/info of the link list
*
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_linklList(struct contextSet_t* set) {
g_assert(set);
// for each link in linkList:
// 1st- Retrieve endpoints A --> B feauture (context Id, device Id, endpoint Id)
// 2st - In the graph associated to the contextId, check wheter A (deviceId) is in the vertices list
// o No, this is weird ... exist
// o Yes, get the other link endpoint (i.e., B) and check whether it exists. If NOT add it, considering
// all the attributes; Otherwise, check whether the link is different from existing edges between A and B
for (gint j = 0; j < linkList->numLinks; j++) {
struct link_t* l = &(linkList->links[j]);
// link assumed to be P2P A --> B; I.e. 2 endPoints; 1st specifies A and 2nd specifie B
struct link_endpointId_t* aEndpointId = &(l->linkEndPointId[0]);
struct topology_id_t* topologyId = &(aEndpointId->topology_id);
// get the contextId
gchar contextUuid[UUID_CHAR_LENGTH];
duplicate_string(contextUuid, topologyId->contextId);
//DEBUG_PC("Link: %s in Context: %s", l->linkId, contextUuid);
// Check first contextUuid exists in the cSet
struct context_t* c = find_contextId_in_set(contextUuid, set);
if (c == NULL) {
DEBUG_PC("ContextId: %s does NOT exist... weird", contextUuid);
exit(-1);
}
// get the device ID of A
gchar aDeviceId[UUID_CHAR_LENGTH];
duplicate_string(aDeviceId, aEndpointId->deviceId);
struct graph_t* g = &(c->g); // get the graph associated to the context c
struct vertices_t* v = find_vertex_in_graph_context(g, aDeviceId);
if (v == NULL) {
DEBUG_PC("aDeviceId: %s IS NOT IN Vertices of contextId: %s", aDeviceId, contextUuid);
exit(-1);
}
// get the bEndpointId
struct link_endpointId_t* bEndpointId = &(l->linkEndPointId[1]);
gchar bDeviceId[UUID_CHAR_LENGTH];
duplicate_string(bDeviceId, bEndpointId->deviceId);
// Check whether device B is in the targeted Vertices from A (i.e., v)?
// If not, add B in the targeted vertices B + create the edge and add it
// If B exist, check whether the explored link/edge is already in the list of edges
struct targetNodes_t* w = find_targeted_vertex_in_graph_context(v, bDeviceId);
if (w == NULL) {
//DEBUG_PC("B device [%s] is PEER of A device [%s]", bDeviceId, v->verticeId.nodeId);
w = add_targeted_vertex_in_graph_context(v, bDeviceId);
add_edge_in_targetedVertice_set(w, l);
}
else {
// w exists, it is needed to check whether the edge (link) should be added
struct edges_t* e = find_edge_in_targetedVertice_set(w, l);
if (e == NULL) {
// Add the link into the list
add_edge_in_targetedVertice_set(w, l);
}
else {
DEBUG_PC("The link already exists ...");
continue;
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Create the set of (distinct) contexts with the deviceList and linkList
*
* @param cSet
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet(struct contextSet_t* cSet) {
g_assert(cSet);
g_assert(deviceList);
g_assert(linkList);
// devices are tied to contexts, i.e. depending on the contextId of the devices
build_contextSet_deviceList(cSet);
// Once the diverse contexts are created and the devices/endpoints asigned to the
// respective graph tied to each context, it is needed to create the edges
build_contextSet_linklList(cSet);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Print the contents of the ContextIds
*
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_contextSet(struct contextSet_t* set) {
g_assert(set);
for (gint i = 0; i < set->num_context_set; i++) {
struct context_t* c = &(set->contextList[i]);
DEBUG_PC("-------------------------------------------------------------");
DEBUG_PC(" Context Id: %s", c->contextId);
DEBUG_PC("-------------------------------------------------------------");
struct graph_t* g = &(c->g);
for (gint j = 0; j < g->numVertices; j++) {
struct vertices_t* v = &(g->vertices[j]);
DEBUG_PC(" Head Device Id: %s", v->verticeId.nodeId);
for (gint k = 0; k < v->numTargetedVertices; k++) {
struct targetNodes_t* w = &(v->targetedVertices[k]);
DEBUG_PC(" [%d] --- Peer Device Id: %s", k, w->tVertice.nodeId);
for (gint l = 0; l < w->numEdges; l++) {
struct edges_t* e = &(w->edges[l]);
DEBUG_PC(" \t link Id: %s", e->linkId);
DEBUG_PC(" \t aEndPointId: %s", e->aEndPointId);
DEBUG_PC(" \t zEndPointId: %s", e->zEndPointId);
DEBUG_PC(" \t Available Capacity: %f, Latency: %f, Cost: %f", e->availCap, e->delay, e->cost);
DEBUG_PC(" \t aTopologyId: %s", e->aTopologyId);
DEBUG_PC(" \t zTopologyId: %s", e->zTopologyId);
}
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check whether src and dst PE nodeId of the req are the same
*
* @param r
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint same_src_dst_pe_nodeid(struct service_t* s)
{
// Check that source PE and dst PE are NOT the same, i.e., different ingress and egress endpoints (iEp, eEp)
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[0]);
struct service_endpoints_id_t* eEp = &(s->service_endpoints_id[1]);
gchar* iEpUUID = iEp->endpoint_uuid;
gchar* eEpUUID = eEp->endpoint_uuid;
gchar* iDevUUID = iEp->device_uuid;
gchar* eDevUUID = eEp->device_uuid;
// Compare the device uuids
if (strcmp(iDevUUID, eDevUUID) != 0) {
DEBUG_PC("DIFFERENT --- iDevId: %s and eDevId: %s", iDevUUID, eDevUUID);
return 1;
}
// Compare the endpoints (ports)
if (strcmp(iEpUUID, eEpUUID) != 0) {
DEBUG_PC("DIFFERENT --- iEpUUID: %s and eEpUUID: %s", iEpUUID, eEpUUID);
return 1;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Handles issues with the route computation
*
* @param route
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void comp_route_connection_issue_handler (struct compRouteOutput_t *path, struct service_t *s)
{
g_assert(path);
g_assert(s);
// Increase the number of computed routes/paths despite there was an issue to be reported
path->numPaths++;
// Copy the serviceId
copy_service_id(&(path->serviceId), &(s->serviceId));
// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
for (gint i = 0; i < s->num_service_endpoints_id; i++) {
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[i]);
struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[i]);
copy_service_endpoint_id(oEp, iEp);
}
path->num_service_endpoints_id = s->num_service_endpoints_id;
path->noPathIssue = NO_PATH_CONS_ISSUE;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief released the allocated memory fo compRouteOutputList_t
*
* @param ro
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_compRouteOutputList (struct compRouteOutputList_t *ro)
{
g_assert (ro);
g_free (ro);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief creates a copy of the underlying graph
*
* @param originalGraph
* @param destGraph
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_graph (struct graph_t *originalGraph, struct graph_t *destGraph) {
g_assert (originalGraph);
g_assert (destGraph);
destGraph->numVertices = originalGraph->numVertices;
for (gint i = 0; i < originalGraph->numVertices; i++) {
struct vertices_t *oVertex = &(originalGraph->vertices[i]);
struct vertices_t *dVertex = &(destGraph->vertices[i]);
dVertex->numTargetedVertices = oVertex->numTargetedVertices;
duplicate_node_id (&oVertex->verticeId, &dVertex->verticeId);
for (gint j = 0; j < oVertex->numTargetedVertices; j++) {
struct targetNodes_t *oTargetedVertex = &(oVertex->targetedVertices[j]);
struct targetNodes_t *dTargetedVertex = &(dVertex->targetedVertices[j]);
duplicate_node_id (&oTargetedVertex->tVertice, &dTargetedVertex->tVertice);
dTargetedVertex->numEdges = oTargetedVertex->numEdges;
for (gint k = 0; k < oTargetedVertex->numEdges; k++) {
struct edges_t *oEdge = &(oTargetedVertex->edges[k]);
struct edges_t *dEdge = &(dTargetedVertex->edges[k]);
duplicate_edge (dEdge, oEdge);
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to retrieve from the graph the edge instance associated to the
* pathLink (pL)
*
* @param pL
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* get_edge_from_graph_by_linkId(struct pathLink_t* pL, struct graph_t* g) {
g_assert(pL);
g_assert(g);
for (gint i = 0; i < g->numVertices; i++) {
struct vertices_t* v = &(g->vertices[i]);
for (gint j = 0; j < v->numTargetedVertices; j++) {
struct targetNodes_t* tv = &(v->targetedVertices[j]);
for (gint k = 0; k < tv->numEdges; k++) {
struct edges_t* e = &(tv->edges[k]);
if (strcmp(e->linkId, pL->linkId) == 0) {
return e;
}
}
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to retrieve from the graph the reverse edge (rev_e) associated to an edge (e)
*
* @param e
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* get_reverse_edge_from_the_graph(struct edges_t* e, struct graph_t* g) {
g_assert(e);
g_assert(g);
for (gint i = 0; i < g->numVertices; i++) {
struct vertices_t* v = &(g->vertices[i]);
// Check Route Element zNodeId with the v->verticeId
if (compare_node_id(&e->zNodeId, &v->verticeId) != 0)
continue;
// Check Route Element zNodeis with any of reachable targeted vertices from v
gboolean foundTargVert = FALSE;
gint indexTargVert = -1;
for (gint j = 0; j < v->numTargetedVertices; j++) {
struct targetNodes_t* tv = &(v->targetedVertices[j]);
if (compare_node_id(&e->aNodeId, &tv->tVertice) == 0)
{
foundTargVert = TRUE;
indexTargVert = j;
break;
}
}
if (foundTargVert == FALSE) {
continue;
}
// The targeted vertice is found, then check matching with the endpoints
struct targetNodes_t* tv = &(v->targetedVertices[indexTargVert]);
for (gint k = 0; k < tv->numEdges; k++) {
struct edges_t* rev_e = &(tv->edges[k]);
if ((strcmp(rev_e->aEndPointId, e->zEndPointId) == 0) &&
(strcmp(rev_e->zEndPointId, e->aEndPointId) == 0)) {
return rev_e;
}
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to reflect in the graph the assigned/allocated resources contained in the path p
* considering the needs (e.g., bandwidth) of service s
*
* @param p
* @param s
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void allocate_graph_resources (struct path_t *p, struct service_t *s, struct graph_t *g)
{
g_assert (p);
g_assert (s);
g_assert (g);
// Retrieve the requested bw by the service
struct path_constraints_t* pathCons = get_path_constraints(s);
for (gint i = 0; i < p->numPathLinks; i++) {
struct pathLink_t* pL = &(p->pathLinks[i]);
// get the edge associated to the linkId in the graph
struct edges_t* e = get_edge_from_graph_by_linkId(pL, g);
if (e == NULL) {
DEBUG_PC("The linkId: %s is NOT found in the Graph!!!", pL->linkId);
exit(-1);
}
//Update the availBw in the edge
gdouble resBw = e->availCap - pathCons->bwConstraint;
DEBUG_PC("Updating the Avail Bw @ edge/link: %s", e->linkId);
DEBUG_PC("Initial avaiCap @ e/link: %f, demanded Bw: %f, resulting Avail Bw: %f", e->availCap, pathCons->bwConstraint, resBw);
memcpy(&e->availCap, &resBw, sizeof(gdouble));
DEBUG_PC("Final e/link avail Bw: %f", e->availCap);
}
g_free(pathCons);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to reflect in the graph the assigned/allocated resources contained in the reverse direction of the path p
* considering the needs (e.g., bandwidth) of service s
*
* @param p
* @param s
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2021
*/
/////////////////////////////////////////////////////////////////////////////////////////
void allocate_graph_reverse_resources(struct path_t* p, struct service_t * s, struct graph_t* g)
{
g_assert(p);
g_assert(s);
g_assert(g);
struct path_constraints_t* pathCons = get_path_constraints(s);
for (gint i = 0; i < p->numPathLinks; i++) {
struct pathLink_t* pL = &(p->pathLinks[i]);
struct edges_t* e = get_edge_from_graph_by_linkId(pL, g);
if (e == NULL) {
DEBUG_PC("The linkId: %s is NOT found in the Graph!!!", pL->linkId);
exit(-1);
}
struct edges_t* rev_e = get_reverse_edge_from_the_graph(e, g);
if (rev_e == NULL) {
DEBUG_PC("the reverse edge of linkId: %s is NOT found in the Graph!!!", pL->linkId);
exit(-1);
}
//Update the availBw in the edge
gdouble resBw = rev_e->availCap - pathCons->bwConstraint;
DEBUG_PC("Updating the Avail Bw @ reverse edge/link: %s", rev_e->linkId);
DEBUG_PC("Initial avaiCap @ reverse edge e/link: %f, demanded Bw: %f, resulting Avail Bw: %f", rev_e->availCap, pathCons->bwConstraint, resBw);
memcpy(&rev_e->availCap, &resBw, sizeof(gdouble));
DEBUG_PC("Final reverse edge e/link avail Bw: %f", rev_e->availCap);
}
g_free(pathCons);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to printall the computed paths for the requested network connectivity services
*
* @param routeList
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2021
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path_connection_list(struct compRouteOutputList_t* routeList) {
g_assert(routeList);
for (gint i = 0; i < routeList->numCompRouteConnList; i++) {
DEBUG_PC("==================== Service Item: %d ===================", i);
struct compRouteOutput_t* rO = &(routeList->compRouteConnection[i]);
DEBUG_PC("num service endpoints: %d", rO->num_service_endpoints_id);
struct serviceId_t* s = &(rO->serviceId);
DEBUG_PC("ContextId: %s, ServiceId: %s", s->contextId, s->service_uuid);
DEBUG_PC("ingress --- %s [%s]", rO->service_endpoints_id[0].device_uuid,
rO->service_endpoints_id[0].endpoint_uuid);
DEBUG_PC("egress --- %s [%s]", rO->service_endpoints_id[1].device_uuid,
rO->service_endpoints_id[1].endpoint_uuid);
if (rO->noPathIssue == NO_PATH_CONS_ISSUE) {
DEBUG_PC("NO PATH SUCCESSFULLY COMPUTED");
continue;
}
// Path
DEBUG_PC("Number of paths: %d", rO->numPaths);
for (gint j = 0; j < rO->numPaths; j++) {
struct path_t* p = &(rO->paths[j]);
print_path_t(p);
}
}
return;
}