Newer
Older
# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from datetime import datetime
import logging, grpc, json, queue
from typing import Dict
from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method
from common.tools.kafka.Variables import KafkaConfig, KafkaTopic
from confluent_kafka import KafkaError
from common.proto.kpi_sample_types_pb2 import KpiSampleType
from common.proto.kpi_manager_pb2 import KpiDescriptor, KpiId
from common.proto.kpi_value_api_pb2_grpc import KpiValueAPIServiceServicer
from common.proto.kpi_value_api_pb2 import KpiAlarms, KpiValueList, KpiValueFilter, KpiValue, KpiValueType
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.interval import IntervalTrigger
from confluent_kafka import Producer as KafkaProducer
from confluent_kafka import Consumer as KafkaConsumer
from prometheus_api_client import PrometheusConnect
from prometheus_api_client.utils import parse_datetime
from kpi_manager.client.KpiManagerClient import KpiManagerClient
METRICS_POOL = MetricsPool('KpiValueAPI', 'NBIgRPC')
PROM_URL = "http://prometheus-k8s.monitoring.svc.cluster.local:9090" # TODO: updated with the env variables
class KpiValueApiServiceServicerImpl(KpiValueAPIServiceServicer):
self.listener_topic = KafkaTopic.ALARMS.value
self.result_queue = queue.Queue()
self.scheduler = BackgroundScheduler()
self.kafka_producer = KafkaProducer({'bootstrap.servers' : KafkaConfig.get_kafka_address()})
self.kafka_consumer = KafkaConsumer({'bootstrap.servers' : KafkaConfig.get_kafka_address(),
'group.id' : 'kpi-value-api-frontend',
'auto.offset.reset' : 'latest'})
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def StoreKpiValues(self, request: KpiValueList, grpc_context: grpc.ServicerContext
) -> Empty:
LOGGER.debug('StoreKpiValues: Received gRPC message object: {:}'.format(request))
producer = self.kafka_producer
kpi_value_to_produce : Dict = {
"kpi_uuid" : kpi_value.kpi_id.kpi_id.uuid,
"timestamp" : kpi_value.timestamp.timestamp,
"kpi_value_type" : self.ExtractKpiValueByType(kpi_value.kpi_value_type)
}
LOGGER.debug('KPI to produce is {:}'.format(kpi_value_to_produce))
msg_key = "gRPC-kpivalueapi" # str(__class__.__name__) can be used
value = json.dumps(kpi_value_to_produce),
callback = self.delivery_callback
)
def ExtractKpiValueByType(self, value):
attributes = [ 'floatVal' , 'int32Val' , 'uint32Val','int64Val',
'uint64Val', 'stringVal', 'boolVal']
for attr in attributes:
try:
return getattr(value, attr)
except (ValueError, TypeError, AttributeError):
continue
return None
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def SelectKpiValues(self, request: KpiValueFilter, grpc_context: grpc.ServicerContext
) -> KpiValueList:
LOGGER.debug('StoreKpiValues: Received gRPC message object: {:}'.format(request))
response = KpiValueList()
kpi_manager_client = KpiManagerClient()
prom_connect = PrometheusConnect(url=PROM_URL)
metrics = [self.GetKpiSampleType(kpi, kpi_manager_client) for kpi in request.kpi_id]
start_timestamps = [parse_datetime(timestamp) for timestamp in request.start_timestamp]
end_timestamps = [parse_datetime(timestamp) for timestamp in request.end_timestamp]
prom_response = []
for start_time, end_time in zip(start_timestamps, end_timestamps):
print(start_time, end_time, metric)
LOGGER.debug(">>> Query: {:}".format(metric))
prom_response.append(
prom_connect.custom_query_range(
query = metric, # this is the metric name and label config
start_time = start_time,
end_time = end_time,
step = 30, # or any other step value (missing in gRPC Filter request)
)
)
for single_resposne in prom_response:
# print ("{:}".format(single_resposne))
for record in single_resposne:
# print("Record >>> kpi: {:} >>> time & values set: {:}".format(record['metric']['__name__'], record['values']))
for value in record['values']:
# print("{:} - {:}".format(record['metric']['__name__'], value))
kpi_value = KpiValue()
kpi_value.kpi_id.kpi_id = record['metric']['__name__'],
kpi_value.timestamp = value[0],
kpi_value.kpi_value_type.CopyFrom(self.ConverValueToKpiValueType(value['kpi_value']))
response.kpi_value_list.append(kpi_value)
return response
def GetKpiSampleType(self, kpi_value: str, kpi_manager_client):
kpi_id = KpiId()
kpi_id.kpi_id.uuid = kpi_value.kpi_id.kpi_id.uuid
# print("KpiId generated: {:}".format(kpi_id))
try:
kpi_descriptor_object = KpiDescriptor()
kpi_descriptor_object = kpi_manager_client.GetKpiDescriptor(kpi_id)
# TODO: why kpi_descriptor_object recevies a KpiDescriptor type object not Empty type object???
if kpi_descriptor_object.kpi_id.kpi_id.uuid == kpi_id.kpi_id.uuid:
LOGGER.info("Extracted KpiDescriptor: {:}".format(kpi_descriptor_object))
print("Extracted KpiDescriptor: {:}".format(kpi_descriptor_object))
return KpiSampleType.Name(kpi_descriptor_object.kpi_sample_type) # extract and return the name of KpiSampleType
else:
LOGGER.info("No KPI Descriptor found in DB for Kpi ID: {:}".format(kpi_id))
print("No KPI Descriptor found in DB for Kpi ID: {:}".format(kpi_id))
except Exception as e:
LOGGER.info("Unable to get KpiDescriptor. Error: {:}".format(e))
print ("Unable to get KpiDescriptor. Error: {:}".format(e))
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def GetKpiAlarms(self, request: KpiId, grpc_context: grpc.ServicerContext) -> KpiAlarms: # type: ignore
"""
Get Alarms from Kafka return Alrams periodically.
"""
LOGGER.debug('GetKpiAlarms: {:}'.format(request))
response = KpiAlarms()
for alarm_key, value in self.StartResponseListener(request.kpi_id.uuid):
response.start_timestamp.timestamp = datetime.strptime(
value["window_start"], "%Y-%m-%dT%H:%M:%S.%fZ").timestamp()
response.kpi_id.kpi_id.uuid = value['kpi_id']
for key, threshold in value.items():
response.alarms[key] = threshold
yield response
def StartResponseListener(self, filter_key=None):
"""
Start the Kafka response listener with APScheduler and return key-value pairs periodically.
"""
LOGGER.info("Starting StartResponseListener")
# Schedule the ResponseListener at fixed intervals
self.scheduler.add_job(
self.response_listener,
trigger=IntervalTrigger(seconds=5),
args=[filter_key],
id=f"response_listener_{self.listener_topic}",
replace_existing=True
)
self.scheduler.start()
LOGGER.info(f"Started Kafka listener for topic {self.listener_topic}...")
while True:
LOGGER.info("entering while...")
key, value = self.result_queue.get() # Wait until a result is available
LOGGER.info("In while true ...")
yield key, value # Yield the result to the calling function
except Exception as e:
LOGGER.warning("Listener stopped. Error: {:}".format(e))
self.scheduler.shutdown()
def response_listener(self, filter_key=None):
"""
Poll Kafka messages and put key-value pairs into the queue.
"""
LOGGER.info(f"Polling Kafka topic {self.listener_topic}...")
consumer = self.kafka_consumer
consumer.subscribe([self.listener_topic])
while True:
msg = consumer.poll(1.0)
if msg is None:
continue
elif msg.error():
if msg.error().code() != KafkaError._PARTITION_EOF:
LOGGER.error(f"Kafka error: {msg.error()}")
break
try:
key = msg.key().decode('utf-8') if msg.key() else None
if filter_key is not None and key == filter_key:
value = json.loads(msg.value().decode('utf-8'))
LOGGER.info(f"Received key: {key}, value: {value}")
self.result_queue.put((key, value))
else:
LOGGER.warning(f"Skipping message with unmatched key: {key} - {filter_key}")
except Exception as e:
LOGGER.error(f"Error processing Kafka message: {e}")
if err: LOGGER.debug('Message delivery failed: {:}'.format(err))
else: LOGGER.debug('Message delivered to topic {:}'.format(msg.topic()))
def ConverValueToKpiValueType(self, value):
kpi_value_type = KpiValueType()
if isinstance(value, int):
kpi_value_type.int32Val = value
elif isinstance(value, float):
kpi_value_type.floatVal = value
elif isinstance(value, str):
kpi_value_type.stringVal = value
elif isinstance(value, bool):
kpi_value_type.boolVal = value
# Add other checks for different types as needed
return kpi_value_type