Skip to content
Snippets Groups Projects
l3_centralizedattackdetectorServiceServicerImpl.py 22.1 KiB
Newer Older
# Copyright 2021-2023 H2020 TeraFlow (https://www.teraflow-h2020.eu/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

ldemarcosm's avatar
ldemarcosm committed
from __future__ import print_function
from datetime import datetime
ldemarcosm's avatar
ldemarcosm committed
import os
import grpc
import numpy as np
import onnxruntime as rt
ldemarcosm's avatar
ldemarcosm committed
import logging
from time import sleep
from common.proto.l3_centralizedattackdetector_pb2 import Empty
from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer

from common.proto.l3_attackmitigator_pb2 import L3AttackmitigatorOutput
from common.proto.l3_attackmitigator_pb2_grpc import L3AttackmitigatorStub

from common.proto.monitoring_pb2 import KpiDescriptor
from common.proto.kpi_sample_types_pb2 import KpiSampleType

from monitoring.client.MonitoringClient import MonitoringClient
from common.proto.monitoring_pb2 import Kpi
from common.tools.timestamp.Converters import timestamp_utcnow_to_float
from common.proto.context_pb2 import Timestamp
ldemarcosm's avatar
ldemarcosm committed

from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient

from multiprocessing import Process, Queue

ldemarcosm's avatar
ldemarcosm committed
LOGGER = logging.getLogger(__name__)
current_dir = os.path.dirname(os.path.abspath(__file__))
MODEL_FILE = os.path.join(current_dir, "ml_model/crypto_5g_rf_spider_features.onnx")
ldemarcosm's avatar
ldemarcosm committed

class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer):

    """
    Initialize variables, prediction model and clients of components used by CAD
ldemarcosm's avatar
ldemarcosm committed
    def __init__(self):
        LOGGER.info("Creating Centralized Attack Detector Service")

        self.inference_values = Queue()
        self.inference_results = Queue()
        self.model = rt.InferenceSession(MODEL_FILE)
        self.input_name = self.model.get_inputs()[0].name
        self.label_name = self.model.get_outputs()[0].name
        self.prob_name = self.model.get_outputs()[1].name
        self.monitoring_client = MonitoringClient()
        self.service_ids = []
        self.monitored_kpis = {
            "l3_security_status": {
                "kpi_id": None,
                "description": "L3 - Confidence of the cryptomining detector in the security status in the last time interval of the service {service_id}",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN,  # TODO: change this to KPI_L3_SECURITY_STATUS and add it to kpi_sample_types.proto
                "service_ids": [],
            },
            "l3_ml_model_confidence": {
                "kpi_id": None,
                "description": "L3 - Security status of the service in a time interval of the service {service_id} (“0” if no attack has been detected on the service and “1” if a cryptomining attack has been detected)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN,  # TODO: change this to KPI_L3_ML_CONFIDENCE and add it to kpi_sample_types.proto
                "service_ids": [],
            },
            "l3_unique_attack_conns": {
                "kpi_id": None,
                "description": "L3 - Number of attack connections detected in a time interval of the service {service_id} (attacks of the same connection [origin IP, origin port, destination IP and destination port] are only considered once)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN,  # TODO: change this to KPI_UNIQUE_ATTACK_CONNS and add it to kpi_sample_types.proto
                "service_ids": [],
            },
            "l3_unique_compromised_clients": {
                "kpi_id": None,
                "description": "L3 - Number of unique compromised clients of the service in a time interval of the service {service_id} (attacks from the same origin IP are only considered once)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN,  # TODO: change this to KPI_UNIQUE_COMPROMISED_CLIENTS and add it to kpi_sample_types.proto
                "service_ids": [],
            },
            "l3_unique_attackers": {
                "kpi_id": None,
                "description": "L3 - number of unique attackers of the service in a time interval of the service {service_id} (attacks from the same destination IP are only considered once)",
                "kpi_sample_type": KpiSampleType.KPISAMPLETYPE_UNKNOWN,  # TODO: change this to KPI_UNIQUE_ATTACKERS and add it to kpi_sample_types.proto
                "service_ids": [],
            },
        }
        self.attackmitigator_client = l3_attackmitigatorClient()

        # Environment variables
        self.CLASSIFICATION_THRESHOLD = os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5)
        self.MONITORED_KPIS_TIME_INTERVAL_AGG = os.getenv("MONITORED_KPIS_TIME_INTERVAL_AGG", 5)
        # Constants
        self.NORMAL_CLASS = 0
        self.CRYPTO_CLASS = 1
        # start monitoring process
        self.monitoring_process = Process(
            target=self.monitoring_process, args=(self.inference_values, self.inference_results)
        )
        self.monitoring_process.start()
    Create a monitored KPI for a specific service and add it to the Monitoring Client
        -input: 
            + client: Monitoring Client object where the KPI will be tracked
            + service_id: service ID where the KPI will be monitored
        -output: KPI identifier representing the KPI

    def create_kpi(self, client: MonitoringClient, service_id, kpi_description, kpi_sample_type):
        kpi_description: KpiDescriptor = KpiDescriptor()
        kpi_description.kpi_description = kpi_description
        kpi_description.service_id.service_uuid.uuid = service_id.service_uuid.uuid
        kpi_description.kpi_sample_type = kpi_sample_type
        LOGGER.info("Created KPI {}...".format(kpi_sample_type))
ldemarcosm's avatar
ldemarcosm committed

    """
    Create the monitored KPIs for a specific service, add them to the Monitoring Client and store their identifiers in the monitored_kpis dictionary
        -input:
            + service_id: service ID where the KPIs will be monitored
        -output: None
    """

    def create_kpis(self, service_id):
        # for now, all the KPIs are created for all the services from which requests are received
        for kpi in self.monitored_kpis:
            created_kpi = self.create_kpi(
                self.monitoring_client,
                service_id,
                self.monitored_kpis[kpi]["description"],
                self.monitored_kpis[kpi]["kpi_sample_type"],
            )
            self.monitored_kpis[kpi]["kpi_id"] = created_kpi.kpi_id
            self.monitored_kpis[kpi]["service_ids"].append(service_id.service_uuid.uuid)

    def monitor_kpis(self):
        while True:
            # get all information from the inference_values queue
            monitor_inference_values = []

            for i in range(self.inference_values.qsize()):
                monitor_inference_values.append(self.inference_values.get())

            # get all information from the inference_results queue
            monitor_inference_results = []

            for i in range(self.inference_results.qsize()):
                monitor_inference_results.append(self.inference_results.get())

            for service_id in self.service_ids:
                time_interval = self.MONITORED_KPIS_TIME_INTERVAL_AGG
                time_interval_start = datetime.utcnow()
                time_interval_end = time_interval_start + time_interval

                # L3 security status
                kpi_security_status = Kpi()
                kpi_security_status.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_security_status"]["kpi_id"].kpi_id)

                # get the output.tag of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                outputs_last_time_interval = []

                for i in range(self.monitor_inference_results):
                    if (
                        self.monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
                        and self.monitor_inference_results[i]["service_id"] == service_id
                        and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
                    ):
                        outputs_last_time_interval.append(self.monitor_inference_results[i]["output"]["tag"])

                kpi_security_status.kpi_value.intVal = (
                    0 if np.all(outputs_last_time_interval == self.NORMAL_CLASS) else 1
                )

                # L3 ML model confidence
                kpi_conf = Kpi()
                kpi_conf.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_ml_model_confidence"]["kpi_id"].kpi_id)

                # get the output.confidence of the ML model of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                confidences_normal_last_time_interval = []
                confidences_crypto_last_time_interval = []

                for i in range(self.monitor_inference_results):
                    if (
                        self.monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
                        and self.monitor_inference_results[i]["service_id"] == service_id
                        and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
                    ):
                        if self.monitor_inference_results[i]["output"]["tag"] == self.NORMAL_CLASS:
                            confidences_normal_last_time_interval.append(
                                self.monitor_inference_results[i]["output"]["confidence"]
                            )
                        elif self.monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            confidences_crypto_last_time_interval.append(
                                self.monitor_inference_results[i]["output"]["confidence"]
                            )

                kpi_conf.kpi_value.intVal = (
                    np.mean(confidences_crypto_last_time_interval)
                    if np.all(outputs_last_time_interval == self.CRYPTO_CLASS)
                    else np.mean(confidences_normal_last_time_interval)
                )

                # L3 unique attack connections
                kpi_unique_attack_conns = Kpi()
                kpi_unique_attack_conns.kpi_id.kpi_id.CopyFrom(
                    self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"].kpi_id
                )

                # get the number of unique attack connections (grouping by origin IP, origin port, destination IP, destination port) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                num_unique_attack_conns_last_time_interval = 0
                unique_attack_conns_last_time_interval = []

                for i in range(self.monitor_inference_results):
                    if (
                        self.monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
                        and self.monitor_inference_results[i]["service_id"] == service_id
                        and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
                    ):
                        if self.monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            current_attack_conn = {
                                "ip_o": self.monitor_inference_results[i]["input"]["src_ip"],
                                "port_o": self.monitor_inference_results[i]["input"]["src_port"],
                                "ip_d": self.monitor_inference_results[i]["input"]["dst_ip"],
                                "port_d": self.monitor_inference_results[i]["input"]["dst_port"],
                            }

                            for j in range(unique_attack_conns_last_time_interval):
                                if current_attack_conn == unique_attack_conns_last_time_interval[j]:
                                    break

                                num_unique_attack_conns_last_time_interval += 1
                                unique_attack_conns_last_time_interval.append(current_attack_conn)

                kpi_unique_attack_conns.kpi_value.intVal = num_unique_attack_conns_last_time_interval

                # L3 unique compromised clients
                kpi_unique_compromised_clients = Kpi()
                kpi_unique_compromised_clients.kpi_id.kpi_id.CopyFrom(
                    self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"].kpi_id
                )

                # get the number of unique compromised clients (grouping by origin IP) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                num_unique_compromised_clients_last_time_interval = 0
                unique_compromised_clients_last_time_interval = []

                for i in range(self.monitor_inference_results):
                    if (
                        self.monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
                        and self.monitor_inference_results[i]["service_id"] == service_id
                        and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
                    ):
                        if self.monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            if (
                                self.monitor_inference_results[i]["output"]["ip_o"]
                                not in unique_compromised_clients_last_time_interval
                            ):
                                unique_compromised_clients_last_time_interval.append(
                                    self.monitor_inference_results[i]["output"]["ip_o"]
                                )
                                num_unique_compromised_clients_last_time_interval += 1

                kpi_unique_compromised_clients.kpi_value.intVal = num_unique_compromised_clients_last_time_interval

                # L3 unique attackers
                kpi_unique_attackers = Kpi()
                kpi_unique_attackers.kpi_id.kpi_id.CopyFrom(
                    self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"].kpi_id
                )

                # get the number of unique attackers (grouping by destination ip) of the last aggregation time interval as indicated by the self.MONITORED_KPIS_TIME_INTERVAL_AGG variable
                num_unique_attackers_last_time_interval = 0
                unique_attackers_last_time_interval = []

                for i in range(self.monitor_inference_results):
                    if (
                        self.monitor_inference_results[i]["timestamp"] >= time_interval_start
                        and self.monitor_inference_results[i]["timestamp"] <= time_interval_end
                        and self.monitor_inference_results[i]["service_id"] == service_id
                        and service_id in self.monitored_kpis["l3_security_status"]["service_ids"]
                    ):
                        if self.monitor_inference_results[i]["output"]["tag"] == self.CRYPTO_CLASS:
                            if (
                                self.monitor_inference_results[i]["output"]["ip_d"]
                                not in unique_attackers_last_time_interval
                            ):
                                unique_attackers_last_time_interval.append(
                                    self.monitor_inference_results[i]["output"]["ip_d"]
                                )
                                num_unique_attackers_last_time_interval += 1

                kpi_unique_attackers.kpi_value.intVal = num_unique_attackers_last_time_interval

                timestamp = Timestamp()
                timestamp.timestamp = timestamp_utcnow_to_float()

                kpi_security_status.timestamp.CopyFrom(timestamp)
                kpi_conf.timestamp.CopyFrom(timestamp)
                kpi_unique_attack_conns.timestamp.CopyFrom(timestamp)
                kpi_unique_compromised_clients.timestamp.CopyFrom(timestamp)
                kpi_unique_attackers.timestamp.CopyFrom(timestamp)

                self.monitoring_client.IncludeKpi(kpi_security_status)
                self.monitoring_client.IncludeKpi(kpi_conf)
                self.monitoring_client.IncludeKpi(kpi_unique_attack_conns)
                self.monitoring_client.IncludeKpi(kpi_unique_compromised_clients)
                self.monitoring_client.IncludeKpi(kpi_unique_attackers)

            sleep(self.MONITORED_KPIS_TIME_INTERVAL_AGG)

    """
    Classify connection as standard traffic or cryptomining attack and return results
        -input: 
            + request: L3CentralizedattackdetectorMetrics object with connection features information
        -output: L3AttackmitigatorOutput object with information about the assigned class and prediction confidence
    """
ldemarcosm's avatar
ldemarcosm committed
    def make_inference(self, request):
        x_data = np.array(
            [
ldemarcosm's avatar
ldemarcosm committed
                [
                    request.c_pkts_all,
                    request.c_ack_cnt,
                    request.c_bytes_uniq,
                    request.c_pkts_data,
                    request.c_bytes_all,
                    request.s_pkts_all,
                    request.s_ack_cnt,
                    request.s_bytes_uniq,
                    request.s_pkts_data,
                    request.s_bytes_all,
ldemarcosm's avatar
ldemarcosm committed
                ]
        predictions = self.model.run([self.prob_name], {self.input_name: x_data.astype(np.float32)})[0]

        # Gather the predicted class, the probability of that class and other relevant information required to block the attack
ldemarcosm's avatar
ldemarcosm committed
        output_message = {
            "confidence": None,
            "timestamp": datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
            "ip_o": request.ip_o,
ldemarcosm's avatar
ldemarcosm committed
            "tag_name": None,
            "tag": None,
            "flow_id": request.flow_id,
            "protocol": request.protocol,
ldemarcosm's avatar
ldemarcosm committed
            "port_d": request.port_d,
            "ml_id": "RandomForest",
            "endpoint_id": request.endpoint_id,
ldemarcosm's avatar
ldemarcosm committed
            "time_start": request.time_start,
            "time_end": request.time_end,
        }
        if predictions[0][1] >= self.CLASSIFICATION_THRESHOLD:
ldemarcosm's avatar
ldemarcosm committed
            output_message["confidence"] = predictions[0][1]
            output_message["tag_name"] = "Crypto"
            output_message["tag"] = self.CRYPTO_CLASS
ldemarcosm's avatar
ldemarcosm committed
        else:
            output_message["confidence"] = predictions[0][0]
            output_message["tag_name"] = "Normal"
            output_message["tag"] = self.NORMAL_CLASS
ldemarcosm's avatar
ldemarcosm committed

        return output_message
ldemarcosm's avatar
ldemarcosm committed

    """
    Receive features from Attack Mitigator, predict attack and communicate with Attack Mitigator
        -input: 
            + request: L3CentralizedattackdetectorMetrics object with connection features information
        -output: Empty object with a message about the execution of the function
    """
    def SendInput(self, request, context):
        # Store the data sent in the request
        self.inference_values.put({"request": request, "timestamp": datetime.now()})
        # Perform inference with the data sent in the request
        logging.info("Performing inference...")
        cryptomining_detector_output = self.make_inference(request)
        logging.info("Inference performed correctly")
        # Store the results of the inference that will be later used to monitor the KPIs
        self.inference_results.put({"output": cryptomining_detector_output, "timestamp": datetime.now()})
        service_id = request.service_id
        # Check if a request of a new service has been received and, if so, create the monitored KPIs for that service
        if service_id not in self.service_ids:
            self.create_kpis(service_id)
            self.service_ids.append(service_id)
        # Only notify Attack Mitigator when a cryptomining connection has been detected
        if cryptomining_detector_output["tag_name"] == "Crypto":
            logging.info("Crypto attack detected")

            # Notify the Attack Mitigator component about the attack
            logging.info(
                "Notifying the Attack Mitigator component about the attack in order to block the connection..."
            )

                logging.info("Sending the connection information to the Attack Mitigator component...")
                message = L3AttackmitigatorOutput(**cryptomining_detector_output)
                response = self.attackmitigator_client.SendOutput(message)
                logging.info(
                    "Attack Mitigator notified and received response: ", response.message
                )  # FIX No message received

                return Empty(message="OK, information received and mitigator notified abou the attack")
            except Exception as e:
                logging.error("Error notifying the Attack Mitigator component about the attack: ", e)
                logging.error("Couldn't find l3_attackmitigator")

                return Empty(message="Attack Mitigator not found")
            logging.info("No attack detected")

            return Empty(message="Ok, information received (no attack detected)")
ldemarcosm's avatar
ldemarcosm committed
    def GetOutput(self, request, context):
        logging.info("Returning inference output...")
        k = np.multiply(self.inference_values, [2])
ldemarcosm's avatar
ldemarcosm committed
        k = np.sum(k)
ldemarcosm's avatar
ldemarcosm committed
        return self.make_inference(k)