Newer
Older
# Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method
from common.proto.context_pb2 import Empty, Timestamp
from common.proto.kpi_sample_types_pb2 import KpiSampleType
from common.proto.l3_attackmitigator_pb2 import L3AttackmitigatorOutput
from common.proto.l3_centralizedattackdetector_pb2 import AttackIPs, AutoFeatures, L3CentralizedattackdetectorMetrics, L3CentralizedattackdetectorBatchInput, StatusMessage
from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer
from common.proto.monitoring_pb2 import Kpi, KpiDescriptor
delacal
committed
from common.tools.timestamp.Converters import timestamp_utcnow_to_float
from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient
from monitoring.client.MonitoringClient import MonitoringClient
delacal
committed
current_dir = os.path.dirname(os.path.abspath(__file__))
# Environment variables
TEST_ML_MODEL = True if int(os.getenv("TEST_ML_MODEL", 0)) == 1 else False
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 10))
METRICS_POOL = MetricsPool("l3_centralizedattackdetector", "RPC")
class ConnectionInfo:
def __init__(self, ip_o, port_o, ip_d, port_d):
self.ip_o = ip_o
self.port_o = port_o
self.ip_d = ip_d
self.port_d = port_d
def __eq__(self, other):
return (
self.ip_o == other.ip_o
and self.port_o == other.port_o
and self.ip_d == other.ip_d
and self.port_d == other.port_d
)
def __str__(self):
karamchandan
committed
return f"ip_o: {self.ip_o}\nport_o: {self.port_o}\nip_d: {self.ip_d}\nport_d: {self.port_d}"
class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer):
karamchandan
committed
def __init__(self):
"""
Initializes the Centralized Attack Detector service.
karamchandan
committed
Args:
None
Returns:
None
"""
LOGGER.info("Creating Centralized Attack Detector Service")
self.inference_values = []
self.inference_results = []
self.cryptomining_detector_path = os.path.join(current_dir, "ml_model/cryptomining_detector/")
self.cryptomining_detector_file_name = os.listdir(self.cryptomining_detector_path)[0]
self.cryptomining_detector_model_path = os.path.join(
self.cryptomining_detector_path, self.cryptomining_detector_file_name
)
self.cryptomining_detector_model = rt.InferenceSession(self.cryptomining_detector_model_path)
karamchandan
committed
# Load cryptomining attack detector features metadata from ONNX file
self.cryptomining_detector_features_metadata = list(
self.cryptomining_detector_model.get_modelmeta().custom_metadata_map.values()
)
self.cryptomining_detector_features_metadata = [float(x) for x in self.cryptomining_detector_features_metadata]
self.cryptomining_detector_features_metadata.sort()
karamchandan
committed
LOGGER.info(f"Cryptomining Attack Detector Features: {self.cryptomining_detector_features_metadata}")
self.input_name = self.cryptomining_detector_model.get_inputs()[0].name
self.label_name = self.cryptomining_detector_model.get_outputs()[0].name
self.prob_name = self.cryptomining_detector_model.get_outputs()[1].name
# KPI values
self.l3_security_status = 0
self.l3_ml_model_confidence = 0
self.l3_inferences_in_interval_counter = 0
self.l3_ml_model_confidence_normal = 0
self.l3_inferences_in_interval_counter_normal = 0
self.l3_ml_model_confidence_crypto = 0
self.l3_inferences_in_interval_counter_crypto = 0
self.l3_attacks = []
self.l3_unique_attack_conns = 0
self.l3_unique_compromised_clients = 0
self.l3_unique_attackers = 0
self.l3_non_empty_time_interval = False
self.active_requests = []
self.monitoring_client = MonitoringClient()
self.service_ids = []
self.monitored_kpis = {
"l3_security_status": {
"kpi_id": None,
karamchandan
committed
"description": "L3 - Confidence of the cryptomining attack detector in the security status in the last time interval of the service {service_id}",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_SECURITY_STATUS_CRYPTO,
"service_ids": [],
},
"l3_ml_model_confidence": {
"kpi_id": None,
"description": "L3 - Security status of the service in a time interval of the service {service_id} (“0” if no attack has been detected on the service and “1” if a cryptomining attack has been detected)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_ML_CONFIDENCE,
"service_ids": [],
},
"l3_unique_attack_conns": {
"kpi_id": None,
"description": "L3 - Number of attack connections detected in a time interval of the service {service_id} (attacks of the same connection [origin IP, origin port, destination IP and destination port] are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACK_CONNS,
"service_ids": [],
},
"l3_unique_compromised_clients": {
"kpi_id": None,
"description": "L3 - Number of unique compromised clients of the service in a time interval of the service {service_id} (attacks from the same origin IP are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_COMPROMISED_CLIENTS,
"service_ids": [],
},
"l3_unique_attackers": {
"kpi_id": None,
"description": "L3 - number of unique attackers of the service in a time interval of the service {service_id} (attacks from the same destination IP are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACKERS,
"service_ids": [],
},
}
self.attackmitigator_client = l3_attackmitigatorClient()
self.CLASSIFICATION_THRESHOLD = float(os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5))
self.MONITORED_KPIS_TIME_INTERVAL_AGG = int(os.getenv("MONITORED_KPIS_TIME_INTERVAL_AGG", 60))
# Constants
self.NORMAL_CLASS = 0
self.CRYPTO_CLASS = 1
self.kpi_test = None
self.time_interval_start = None
self.time_interval_end = None
# CAD evaluation tests
self.cad_inference_times = []
self.cad_num_inference_measurements = 100
# AM evaluation tests
self.am_notification_times = []
# List of attack connections IPs
self.attack_ips = []
# List of attack connections
self.attack_connections = []
self.correct_attack_conns = 0
self.correct_predictions = 0
self.total_predictions = 0
self.false_positives = 0
self.false_negatives = 0
karamchandan
committed
self.pod_id = uuid.uuid4()
LOGGER.info(f"Pod Id.: {self.pod_id}")
self.first_batch_request_time = 0
self.last_batch_request_time = 0
self.response_times_csv_file_path = "response_times.csv"
col_names = ["timestamp_first_req", "timestamp_last_req", "total_time", "batch_size"]
with open(self.response_times_csv_file_path, "w", newline="") as file:
writer = csv.writer(file)
writer.writerow(col_names)
delacal
committed
def create_kpi(
delacal
committed
self,
service_id,
kpi_name,
kpi_description,
kpi_sample_type,
delacal
committed
):
karamchandan
committed
"""
Creates a new KPI for a specific service and add it to the Monitoring client
Args:
service_id (ServiceID): The ID of the service.
kpi_name (str): The name of the KPI.
kpi_description (str): The description of the KPI.
kpi_sample_type (KpiSampleType): The sample type of the KPI.
Returns:
kpi (Kpi): The created KPI.
"""
delacal
committed
kpidescriptor = KpiDescriptor()
kpidescriptor.kpi_description = kpi_description
kpidescriptor.service_id.service_uuid.uuid = service_id.service_uuid.uuid
kpidescriptor.kpi_sample_type = kpi_sample_type
karamchandan
committed
kpi = self.monitoring_client.SetKpi(kpidescriptor)
delacal
committed
LOGGER.info("Created KPI {}".format(kpi_name))
karamchandan
committed
return kpi
def create_kpis(self, service_id):
karamchandan
committed
"""
Creates the monitored KPIs for a specific service, adds them to the Monitoring client and stores their identifiers in the monitored_kpis dictionary
Args:
service_id (uuid): The ID of the service.
Returns:
None
"""
delacal
committed
LOGGER.info("Creating KPIs for service {}".format(service_id))
# all the KPIs are created for all the services from which requests are received
for kpi in self.monitored_kpis:
created_kpi = self.create_kpi(
service_id,
delacal
committed
kpi,
delacal
committed
self.monitored_kpis[kpi]["description"].format(service_id=service_id.service_uuid.uuid),
self.monitored_kpis[kpi]["kpi_sample_type"],
)
self.monitored_kpis[kpi]["kpi_id"] = created_kpi.kpi_id
self.monitored_kpis[kpi]["service_ids"].append(service_id.service_uuid.uuid)
LOGGER.info("Created KPIs for service {}".format(service_id))
def monitor_kpis(self):
karamchandan
committed
"""
Monitors KPIs for all the services from which requests are received
Args:
None
Returns:
None
"""
monitor_inference_results = self.inference_results
monitor_service_ids = self.service_ids
self.assign_timestamp(monitor_inference_results)
non_empty_time_interval = self.l3_non_empty_time_interval
if non_empty_time_interval:
for service_id in monitor_service_ids:
LOGGER.debug("service_id: {}".format(service_id))
self.monitor_compute_l3_kpi()
LOGGER.debug("KPIs sent to monitoring server")
else:
LOGGER.debug("No KPIs sent to monitoring server")
def assign_timestamp(self, monitor_inference_results):
karamchandan
committed
"""
Assigns a timestamp to the monitored inference results.
Args:
monitor_inference_results (list): A list of monitored inference results.
Returns:
None
"""
time_interval = self.MONITORED_KPIS_TIME_INTERVAL_AGG
# assign the timestamp of the first inference result to the time_interval_start
if self.time_interval_start is None:
self.time_interval_start = monitor_inference_results[0]["timestamp"]
LOGGER.debug("self.time_interval_start: {}".format(self.time_interval_start))
# add time_interval to the current time to get the time interval end
LOGGER.debug("time_interval: {}".format(time_interval))
LOGGER.debug(timedelta(seconds=time_interval))
self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)
current_time = datetime.utcnow()
LOGGER.debug("current_time: {}".format(current_time))
if current_time >= self.time_interval_end:
self.time_interval_start = self.time_interval_end
self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)
self.l3_security_status = 0 # unnecessary
self.l3_ml_model_confidence = 0
self.l3_inferences_in_interval_counter = 0
self.l3_ml_model_confidence_normal = 0
self.l3_inferences_in_interval_counter_normal = 0
self.l3_ml_model_confidence_crypto = 0
self.l3_inferences_in_interval_counter_crypto = 0
self.l3_attacks = []
self.l3_unique_attack_conns = 0
self.l3_unique_compromised_clients = 0
self.l3_unique_attackers = 0
self.l3_non_empty_time_interval = False
LOGGER.debug("time_interval_start: {}".format(self.time_interval_start))
LOGGER.debug("time_interval_end: {}".format(self.time_interval_end))
karamchandan
committed
def monitor_compute_l3_kpi(
self,
):
karamchandan
committed
"""
Computes the monitored KPIs for a specific service and sends them to the Monitoring server
Args:
None
Returns:
None
"""
# L3 security status
kpi_security_status = Kpi()
kpi_security_status.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_security_status"]["kpi_id"])
kpi_security_status.kpi_value.int32Val = self.l3_security_status
# L3 ML model confidence
kpi_conf = Kpi()
kpi_conf.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_ml_model_confidence"]["kpi_id"])
kpi_conf.kpi_value.floatVal = self.monitor_ml_model_confidence()
# L3 unique attack connections
kpi_unique_attack_conns = Kpi()
kpi_unique_attack_conns.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"])
kpi_unique_attack_conns.kpi_value.int32Val = self.l3_unique_attack_conns
# L3 unique compromised clients
kpi_unique_compromised_clients = Kpi()
kpi_unique_compromised_clients.kpi_id.kpi_id.CopyFrom(
self.monitored_kpis["l3_unique_compromised_clients"]["kpi_id"]
)
kpi_unique_compromised_clients.kpi_value.int32Val = self.l3_unique_compromised_clients
# L3 unique attackers
kpi_unique_attackers = Kpi()
kpi_unique_attackers.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attackers"]["kpi_id"])
kpi_unique_attackers.kpi_value.int32Val = self.l3_unique_attackers
timestamp = Timestamp()
timestamp.timestamp = timestamp_utcnow_to_float()
kpi_security_status.timestamp.CopyFrom(timestamp)
kpi_conf.timestamp.CopyFrom(timestamp)
kpi_unique_attack_conns.timestamp.CopyFrom(timestamp)
kpi_unique_compromised_clients.timestamp.CopyFrom(timestamp)
kpi_unique_attackers.timestamp.CopyFrom(timestamp)
LOGGER.debug("Sending KPIs to monitoring server")
LOGGER.debug("kpi_security_status: {}".format(kpi_security_status))
LOGGER.debug("kpi_conf: {}".format(kpi_conf))
LOGGER.debug("kpi_unique_attack_conns: {}".format(kpi_unique_attack_conns))
LOGGER.debug("kpi_unique_compromised_clients: {}".format(kpi_unique_compromised_clients))
LOGGER.debug("kpi_unique_attackers: {}".format(kpi_unique_attackers))
try:
self.monitoring_client.IncludeKpi(kpi_security_status)
self.monitoring_client.IncludeKpi(kpi_conf)
self.monitoring_client.IncludeKpi(kpi_unique_attack_conns)
self.monitoring_client.IncludeKpi(kpi_unique_compromised_clients)
self.monitoring_client.IncludeKpi(kpi_unique_attackers)
except Exception as e:
LOGGER.debug("Error sending KPIs to monitoring server: {}".format(e))
def monitor_ml_model_confidence(self):
karamchandan
committed
"""
Get the monitored KPI for the confidence of the ML model
karamchandan
committed
Args:
None
karamchandan
committed
Returns:
confidence (float): The monitored KPI for the confidence of the ML model
"""
confidence = None
if self.l3_security_status == 0:
confidence = self.l3_ml_model_confidence_normal
else:
confidence = self.l3_ml_model_confidence_crypto
return confidence
def perform_inference(self, request):
karamchandan
committed
"""
Performs inference on the input data using the Cryptomining Attack Detector model to classify the connection as standard traffic or cryptomining attack.
Args:
request (L3CentralizedattackdetectorMetrics): A L3CentralizedattackdetectorMetrics object with connection features information.
Returns:
dict: A dictionary containing the predicted class, the probability of that class, and other relevant information required to block the attack.
"""
x_data = np.array([[feature.feature for feature in request.features]])
# Print input data shape
LOGGER.debug("x_data.shape: {}".format(x_data.shape))
# Get batch size
batch_size = x_data.shape[0]
predictions = self.cryptomining_detector_model.run(
[self.prob_name], {self.input_name: x_data.astype(np.float32)}
)[0]
# Measure inference time
inference_time = inference_time_end - inference_time_start
self.cad_inference_times.append(inference_time)
if len(self.cad_inference_times) > self.cad_num_inference_measurements:
inference_times_np_array = np.array(self.cad_inference_times)
np.save(f"inference_times_{batch_size}.npy", inference_times_np_array)
avg_inference_time = np.mean(inference_times_np_array)
max_inference_time = np.max(inference_times_np_array)
min_inference_time = np.min(inference_times_np_array)
std_inference_time = np.std(inference_times_np_array)
median_inference_time = np.median(inference_times_np_array)
LOGGER.debug("Average inference time: {}".format(avg_inference_time))
LOGGER.debug("Max inference time: {}".format(max_inference_time))
LOGGER.debug("Min inference time: {}".format(min_inference_time))
LOGGER.debug("Standard deviation inference time: {}".format(std_inference_time))
LOGGER.debug("Median inference time: {}".format(median_inference_time))
with open(f"inference_times_stats_{batch_size}.txt", "w") as f:
f.write("Average inference time: {}\n".format(avg_inference_time))
f.write("Max inference time: {}\n".format(max_inference_time))
f.write("Min inference time: {}\n".format(min_inference_time))
f.write("Standard deviation inference time: {}\n".format(std_inference_time))
f.write("Median inference time: {}\n".format(median_inference_time))
# Gather the predicted class, the probability of that class and other relevant information required to block the attack
output_message = {
"confidence": None,
"timestamp": datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
"ip_o": request.connection_metadata.ip_o,
"ip_d": request.connection_metadata.ip_d,
"flow_id": request.connection_metadata.flow_id,
"protocol": request.connection_metadata.protocol,
"port_o": request.connection_metadata.port_o,
"port_d": request.connection_metadata.port_d,
"ml_id": self.cryptomining_detector_file_name,
"service_id": request.connection_metadata.service_id,
"endpoint_id": request.connection_metadata.endpoint_id,
"time_start": request.connection_metadata.time_start,
"time_end": request.connection_metadata.time_end,
if predictions[0][1] >= self.CLASSIFICATION_THRESHOLD:
output_message["confidence"] = predictions[0][1]
output_message["tag_name"] = "Crypto"
output_message["tag"] = self.CRYPTO_CLASS
else:
output_message["confidence"] = predictions[0][0]
output_message["tag_name"] = "Normal"
output_message["tag"] = self.NORMAL_CLASS
karamchandan
committed
def perform_batch_inference(self, requests):
"""
Performs batch inference on the input data using the Cryptomining Attack Detector model to classify the connection as standard traffic or cryptomining attack.
Args:
requests (list): A list of L3CentralizedattackdetectorMetrics objects with connection features information.
Returns:
list: A list of dictionaries containing the predicted class, the probability of that class, and other relevant information required to block the attack for each request.
"""
batch_size = len(requests)
# Create an empty array to hold the input data
x_data = np.empty((batch_size, len(requests[0].features)))
# Fill in the input data array with features from each request
for i, request in enumerate(requests):
x_data[i] = [feature.feature for feature in request.features]
# Print input data shape
LOGGER.debug("x_data.shape: {}".format(x_data.shape))
# Perform inference
predictions = self.cryptomining_detector_model.run(
[self.prob_name], {self.input_name: x_data.astype(np.float32)}
)[0]
# Measure inference time
inference_time = inference_time_end - inference_time_start
self.cad_inference_times.append(inference_time)
if len(self.cad_inference_times) > self.cad_num_inference_measurements:
inference_times_np_array = np.array(self.cad_inference_times)
np.save(f"inference_times_{batch_size}.npy", inference_times_np_array)
avg_inference_time = np.mean(inference_times_np_array)
max_inference_time = np.max(inference_times_np_array)
min_inference_time = np.min(inference_times_np_array)
std_inference_time = np.std(inference_times_np_array)
median_inference_time = np.median(inference_times_np_array)
LOGGER.debug("Average inference time: {}".format(avg_inference_time))
LOGGER.debug("Max inference time: {}".format(max_inference_time))
LOGGER.debug("Min inference time: {}".format(min_inference_time))
LOGGER.debug("Standard deviation inference time: {}".format(std_inference_time))
LOGGER.debug("Median inference time: {}".format(median_inference_time))
with open(f"inference_times_stats_{batch_size}.txt", "w") as f:
f.write("Average inference time: {}\n".format(avg_inference_time))
f.write("Max inference time: {}\n".format(max_inference_time))
f.write("Min inference time: {}\n".format(min_inference_time))
f.write("Standard deviation inference time: {}\n".format(std_inference_time))
f.write("Median inference time: {}\n".format(median_inference_time))
# Gather the predicted class, the probability of that class and other relevant information required to block the attack
output_messages = []
for i, request in enumerate(requests):
output_messages.append(
{
"confidence": None,
"timestamp": datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
"ip_o": request.connection_metadata.ip_o,
"ip_d": request.connection_metadata.ip_d,
"tag_name": None,
"tag": None,
"flow_id": request.connection_metadata.flow_id,
"protocol": request.connection_metadata.protocol,
"port_o": request.connection_metadata.port_o,
"port_d": request.connection_metadata.port_d,
"ml_id": self.cryptomining_detector_file_name,
"service_id": request.connection_metadata.service_id,
"endpoint_id": request.connection_metadata.endpoint_id,
"time_start": request.connection_metadata.time_start,
"time_end": request.connection_metadata.time_end,
}
)
if predictions[i][1] >= self.CLASSIFICATION_THRESHOLD:
output_messages[i]["confidence"] = predictions[i][1]
output_messages[i]["tag_name"] = "Crypto"
output_messages[i]["tag"] = self.CRYPTO_CLASS
else:
output_messages[i]["confidence"] = predictions[i][0]
output_messages[i]["tag_name"] = "Normal"
output_messages[i]["tag"] = self.NORMAL_CLASS
return output_messages
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def AnalyzeConnectionStatistics(
self, request : L3CentralizedattackdetectorMetrics, context : grpc.ServicerContext
) -> StatusMessage:
karamchandan
committed
"""
Analyzes the connection statistics sent in the request, performs batch inference on the
input data using the Cryptomining Attack Detector model to classify the connection as
standard traffic or cryptomining attack, and notifies the Attack Mitigator component in
case of attack.
karamchandan
committed
Args:
request (L3CentralizedattackdetectorMetrics): A L3CentralizedattackdetectorMetrics
object with connection features information.
context (grpc.ServicerContext): The context of the request.
karamchandan
committed
Returns:
StatusMessage: An response indicating that the information was received and processed.
karamchandan
committed
"""
# Perform inference with the data sent in the request
if len(self.active_requests) == 0:
self.active_requests.append(request)
karamchandan
committed
LOGGER.debug("Performing inference... {}".format(self.pod_id))
inference_time_start = time.time()
karamchandan
committed
cryptomining_detector_output = self.perform_batch_inference(self.active_requests)
inference_time_end = time.time()
LOGGER.debug("Inference performed in {} seconds".format(inference_time_end - inference_time_start))
karamchandan
committed
LOGGER.info("Inference performed correctly")
self.inference_results.append({"output": cryptomining_detector_output, "timestamp": datetime.now()})
LOGGER.debug("inference_results length: {}".format(len(self.inference_results)))
for i, req in enumerate(self.active_requests):
service_id = req.connection_metadata.service_id
# Check if a request of a new service has been received and, if so, create
# the monitored KPIs for that service
if service_id not in self.service_ids:
self.create_kpis(service_id)
self.service_ids.append(service_id)
monitor_kpis_start = time.time()
self.monitor_kpis()
monitor_kpis_end = time.time()
LOGGER.debug("Monitoring KPIs performed in {} seconds".format(monitor_kpis_end - monitor_kpis_start))
LOGGER.debug("cryptomining_detector_output: {}".format(cryptomining_detector_output[i]))
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
self.analyze_prediction_accuracy(cryptomining_detector_output[i]["confidence"])
connection_info = ConnectionInfo(
req.connection_metadata.ip_o,
req.connection_metadata.port_o,
req.connection_metadata.ip_d,
req.connection_metadata.port_d,
)
self.l3_non_empty_time_interval = True
if cryptomining_detector_output[i]["tag_name"] == "Crypto":
self.l3_security_status = 1
self.l3_inferences_in_interval_counter_crypto += 1
self.l3_ml_model_confidence_crypto = (
self.l3_ml_model_confidence_crypto * (self.l3_inferences_in_interval_counter_crypto - 1)
+ cryptomining_detector_output[i]["confidence"]
) / self.l3_inferences_in_interval_counter_crypto
if connection_info not in self.l3_attacks:
self.l3_attacks.append(connection_info)
self.l3_unique_attack_conns += 1
self.l3_unique_compromised_clients = len(set([conn.ip_o for conn in self.l3_attacks]))
self.l3_unique_attackers = len(set([conn.ip_d for conn in self.l3_attacks]))
else:
self.l3_inferences_in_interval_counter_normal += 1
self.l3_ml_model_confidence_normal = (
self.l3_ml_model_confidence_normal * (self.l3_inferences_in_interval_counter_normal - 1)
+ cryptomining_detector_output[i]["confidence"]
) / self.l3_inferences_in_interval_counter_normal
# Only notify Attack Mitigator when a cryptomining connection has been detected
if cryptomining_detector_output[i]["tag_name"] == "Crypto":
self.attack_connections.append(connection_info)
if connection_info.ip_o in self.attack_ips or connection_info.ip_d in self.attack_ips:
self.correct_attack_conns += 1
self.correct_predictions += 1
else:
LOGGER.debug("False positive: {}".format(connection_info))
self.false_positives += 1
self.total_predictions += 1
LOGGER.debug("Crypto attack detected")
# Notify the Attack Mitigator component about the attack
karamchandan
committed
LOGGER.info(
"Notifying the Attack Mitigator component about the attack in order to block the connection..."
)
try:
karamchandan
committed
LOGGER.info("Sending the connection information to the Attack Mitigator component...")
message = L3AttackmitigatorOutput(**cryptomining_detector_output[i])
karamchandan
committed
am_response = self.attackmitigator_client.PerformMitigation(message)
LOGGER.debug("AM response: {}".format(am_response))
karamchandan
committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
self.am_notification_times.append(notification_time_end - notification_time_start)
LOGGER.debug(f"am_notification_times length: {len(self.am_notification_times)}")
LOGGER.debug(f"last am_notification_time: {self.am_notification_times[-1]}")
if len(self.am_notification_times) > 100:
am_notification_times_np_array = np.array(self.am_notification_times)
np.save("am_notification_times.npy", am_notification_times_np_array)
avg_notification_time = np.mean(am_notification_times_np_array)
max_notification_time = np.max(am_notification_times_np_array)
min_notification_time = np.min(am_notification_times_np_array)
std_notification_time = np.std(am_notification_times_np_array)
median_notification_time = np.median(am_notification_times_np_array)
LOGGER.debug("Average notification time: {}".format(avg_notification_time))
LOGGER.debug("Max notification time: {}".format(max_notification_time))
LOGGER.debug("Min notification time: {}".format(min_notification_time))
LOGGER.debug("Std notification time: {}".format(std_notification_time))
LOGGER.debug("Median notification time: {}".format(median_notification_time))
with open("am_notification_times_stats.txt", "w") as f:
f.write("Average notification time: {}\n".format(avg_notification_time))
f.write("Max notification time: {}\n".format(max_notification_time))
f.write("Min notification time: {}\n".format(min_notification_time))
f.write("Std notification time: {}\n".format(std_notification_time))
f.write("Median notification time: {}\n".format(median_notification_time))
karamchandan
committed
LOGGER.info("Attack Mitigator notified")
except Exception as e:
karamchandan
committed
LOGGER.error("Error notifying the Attack Mitigator component about the attack: ", e)
LOGGER.error("Couldn't find l3_attackmitigator")
return StatusMessage(message="Attack Mitigator not found")
else:
karamchandan
committed
LOGGER.info("No attack detected")
if cryptomining_detector_output[i]["tag_name"] != "Crypto":
if connection_info.ip_o not in self.attack_ips and connection_info.ip_d not in self.attack_ips:
self.correct_predictions += 1
else:
LOGGER.debug("False negative: {}".format(connection_info))
self.false_negatives += 1
self.total_predictions += 1
self.active_requests = []
self.last_batch_request_time = time.time()
col_values = [
self.first_batch_request_time,
self.last_batch_request_time,
self.last_batch_request_time - self.first_batch_request_time,
BATCH_SIZE,
]
LOGGER.debug("col_values: {}".format(col_values))
with open(self.response_times_csv_file_path, "a", newline="") as file:
writer = csv.writer(file)
writer.writerow(col_values)
return StatusMessage(message="Ok, metrics processed")
return StatusMessage(message="Ok, information received")
def analyze_prediction_accuracy(self, confidence):
karamchandan
committed
"""
Analyzes the prediction accuracy of the Centralized Attack Detector.
Args:
confidence (float): The confidence level of the Cryptomining Attack Detector model.
Returns:
None
"""
LOGGER.info("Number of Attack Connections Correctly Classified: {}".format(self.correct_attack_conns))
LOGGER.info("Number of Attack Connections: {}".format(len(self.attack_connections)))
if self.total_predictions > 0:
overall_detection_acc = self.correct_predictions / self.total_predictions
else:
overall_detection_acc = 0
LOGGER.info("Overall Detection Accuracy: {}\n".format(overall_detection_acc))
if len(self.attack_connections) > 0:
cryptomining_attack_detection_acc = self.correct_attack_conns / len(self.attack_connections)
else:
cryptomining_attack_detection_acc = 0
LOGGER.info("Cryptomining Attack Detection Accuracy: {}".format(cryptomining_attack_detection_acc))
karamchandan
committed
LOGGER.info("Cryptomining Attack Detector Confidence: {}".format(confidence))
with open("prediction_accuracy.txt", "a") as f:
LOGGER.debug("Exporting prediction accuracy and confidence")
f.write("Overall Detection Accuracy: {}\n".format(overall_detection_acc))
f.write("Cryptomining Attack Detection Accuracy: {}\n".format(cryptomining_attack_detection_acc))
f.write("Total Predictions: {}\n".format(self.total_predictions))
f.write("Total Positives: {}\n".format(len(self.attack_connections)))
f.write("False Positives: {}\n".format(self.false_positives))
f.write("True Negatives: {}\n".format(self.total_predictions - len(self.attack_connections)))
f.write("False Negatives: {}\n".format(self.false_negatives))
karamchandan
committed
f.write("Cryptomining Attack Detector Confidence: {}\n\n".format(confidence))
f.write("Timestamp: {}\n".format(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
f.close()
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def AnalyzeBatchConnectionStatistics(
self, request : L3CentralizedattackdetectorBatchInput, context : grpc.ServicerContext
) -> StatusMessage:
karamchandan
committed
"""
Analyzes a batch of connection statistics sent in the request, performs batch inference on the
input data using the Cryptomining Attack Detector model to classify the connection as standard
traffic or cryptomining attack, and notifies the Attack Mitigator component in case of attack.
karamchandan
committed
Args:
request (L3CentralizedattackdetectorBatchInput): A L3CentralizedattackdetectorBatchInput
object with connection features information.
context (grpc.ServicerContext): The context of the request.
karamchandan
committed
Returns:
StatusMessage: An StatusMessage indicating that the information was received and processed.
karamchandan
committed
"""
batch_time_start = time.time()
for metric in request.metrics:
self.AnalyzeConnectionStatistics(metric, context)
batch_time_end = time.time()
with open("batch_time.txt", "a") as f:
karamchandan
committed
f.write(f"{len(request.metrics)}\n")
f.write(f"{batch_time_end - batch_time_start}\n\n")
f.close()
karamchandan
committed
LOGGER.debug(f"Batch time: {batch_time_end - batch_time_start}")
LOGGER.debug("Batch time: {}".format(batch_time_end - batch_time_start))
return StatusMessage(message="OK, information received.")
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def GetFeaturesIds(self, request : Empty, context : grpc.ServicerContext) -> AutoFeatures:
karamchandan
committed
"""
Returns a list of feature IDs used by the Cryptomining Attack Detector model.
Args:
request (Empty): An empty request object.
context (grpc.ServicerContext): The context of the request.
karamchandan
committed
Returns:
features_ids (AutoFeatures): A list of feature IDs used by the Cryptomining Attack Detector model.
"""
features_ids = AutoFeatures()
for feature in self.cryptomining_detector_features_metadata:
karamchandan
committed
features_ids.auto_features.append(feature)
karamchandan
committed
return features_ids
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def SetAttackIPs(self, request : AttackIPs, context : grpc.ServicerContext) -> Empty:
Sets the list of attack IPs in order to be used to compute the prediction accuracy of the
Centralized Attack Detector in case of testing the ML model.
Args:
request (AttackIPs): A list of attack IPs.
context (grpc.ServicerContext): The context of the request.
"""
self.attack_ips = request.attack_ips
LOGGER.debug(f"Succesfully set attack IPs: {self.attack_ips}")