Skip to content
Snippets Groups Projects
TelemetryFrontendServiceServicerImpl.py 9.99 KiB
Newer Older
  • Learn to ignore specific revisions
  • # Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #      http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    
    # limitations under the License.
    
    
    Waleed Akbar's avatar
    Waleed Akbar committed
    import ast
    import threading
    import time
    
    Waleed Akbar's avatar
    Waleed Akbar committed
    
    from confluent_kafka import Consumer as KafkaConsumer
    
    from common.proto.context_pb2 import Empty
    
    from monitoring.service.NameMapping import NameMapping
    
    from confluent_kafka import Producer as KafkaProducer
    from confluent_kafka import KafkaException
    
    Waleed Akbar's avatar
    Waleed Akbar committed
    from confluent_kafka import KafkaError
    
    from common.proto.telemetry_frontend_pb2 import CollectorId, Collector, CollectorFilter, CollectorList
    
    from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method
    from common.proto.telemetry_frontend_pb2_grpc import TelemetryFrontendServiceServicer
    
    
    from telemetry.database.TelemetryModel import Collector as CollectorModel
    from telemetry.database.managementDB import managementDB
    
    LOGGER            = logging.getLogger(__name__)
    METRICS_POOL      = MetricsPool('Monitoring', 'TelemetryFrontend')
    KAFKA_SERVER_IP   = '127.0.0.1:9092'
    ACTIVE_COLLECTORS = []
    
    KAFKA_TOPICS      = {'request' : 'topic_request', 
                         'response': 'topic_response'}
    
    
    
    class TelemetryFrontendServiceServicerImpl(TelemetryFrontendServiceServicer):
        def __init__(self, name_mapping : NameMapping):
            LOGGER.info('Init TelemetryFrontendService')
    
            self.kafka_producer = KafkaProducer({'bootstrap.servers': KAFKA_SERVER_IP,})
            self.kafka_consumer = KafkaConsumer({'bootstrap.servers' : KAFKA_SERVER_IP,
                                                'group.id'          : 'frontend',
                                                'auto.offset.reset' : 'latest'})
    
        def add_collector_to_db(self, request: Collector ): # type: ignore
    
            try:
                # Create a new Collector instance
                collector_to_insert                     = CollectorModel()
                collector_to_insert.collector_id        = request.collector_id.collector_id.uuid
    
                collector_to_insert.kpi_id              = request.kpi_id.kpi_id.uuid
                collector_to_insert.collector           = "DESC 1"
    
                collector_to_insert.sampling_duration_s = request.duration_s
                collector_to_insert.sampling_interval_s = request.interval_s
                collector_to_insert.start_timestamp     = time.time()
                collector_to_insert.end_timestamp       = time.time()
                self.managementDBobj.add_row_to_db(collector_to_insert)
            except Exception as e:
                LOGGER.info("Unable to create collectorModel class object. {:}".format(e))
    
        # @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
        def StartCollector(self, 
                           request : Collector, grpc_context: grpc.ServicerContext # type: ignore
                          ) -> CollectorId: # type: ignore
            # push info to frontend db
    
            LOGGER.info ("gRPC message: {:}".format(request))
    
            response = CollectorId()
    
    Waleed Akbar's avatar
    Waleed Akbar committed
            _collector_id       = str(request.collector_id.collector_id.uuid)
    
            _collector_kpi_id   = str(request.kpi_id.kpi_id.uuid)
            _collector_duration = int(request.duration_s)
            _collector_interval = int(request.interval_s)
    
            # pushing Collector to DB
            self.add_collector_to_db(request)
    
            self.publish_to_kafka_request_topic(_collector_id, _collector_kpi_id, _collector_duration, _collector_interval)
            # self.run_publish_to_kafka_request_topic(_collector_id, _collector_kpi_id, _collector_duration, _collector_interval)
    
            response.collector_id.uuid = request.collector_id.collector_id.uuid # type: ignore
    
        def run_publish_to_kafka_request_topic(self, msg_key: str, kpi: str, duration : int, interval: int):
            # Add threading.Thread() response to dictonary and call start() in the next statement
            threading.Thread(target=self.publish_to_kafka_request_topic, args=(msg_key, kpi, duration, interval)).start()
    
        def publish_to_kafka_request_topic(self, 
                                 collector_id: str, kpi: str, duration : int, interval: int
                                 ):
    
            """
            Method to generate collector request to Kafka topic.
            """
    
    Waleed Akbar's avatar
    Waleed Akbar committed
            # time.sleep(5)
    
            # producer_configs = {
            #     'bootstrap.servers': KAFKA_SERVER_IP,
            # }
    
            # topic_request = "topic_request"
    
            msg_value : Tuple [str, int, int] = (kpi, duration, interval)
            # print ("Request generated: ", "Colletcor Id: ", collector_id, \
    
            #         ", \nKPI: ", kpi, ", Duration: ", duration, ", Interval: ", interval)
    
            # producerObj = KafkaProducer(producer_configs)
            self.kafka_producer.produce(KAFKA_TOPICS['request'], key=collector_id, value= str(msg_value), callback=self.delivery_callback)
            # producerObj.produce(KAFKA_TOPICS['request'], key=collector_id, value= str(msg_value), callback=self.delivery_callback)
            LOGGER.info("Collector Request Generated: {:}, {:}, {:}, {:}".format(collector_id, kpi, duration, interval))
            # producerObj.produce(topic_request, key=collector_id, value= str(msg_value), callback=self.delivery_callback)
            ACTIVE_COLLECTORS.append(collector_id)
            self.kafka_producer.flush()
    
    Waleed Akbar's avatar
    Waleed Akbar committed
        def run_kafka_listener(self):
            # print ("--- STARTED: run_kafka_listener ---")
            threading.Thread(target=self.kafka_listener).start()
            return True
    
        def kafka_listener(self):
                """
                listener for response on Kafka topic.
                """
    
                # # print ("--- STARTED: kafka_listener ---")
                # conusmer_configs = {
                #     'bootstrap.servers' : KAFKA_SERVER_IP,
                #     'group.id'          : 'frontend',
                #     'auto.offset.reset' : 'latest'
                # }
                # # topic_response = "topic_response"
    
                # consumerObj = KafkaConsumer(conusmer_configs)
                self.kafka_consumer.subscribe([KAFKA_TOPICS['response']])
    
    Waleed Akbar's avatar
    Waleed Akbar committed
                # print (time.time())
                while True:
    
                    receive_msg = self.kafka_consumer.poll(2.0)
    
    Waleed Akbar's avatar
    Waleed Akbar committed
                    if receive_msg is None:
    
                        # print (" - Telemetry frontend listening on Kafka Topic: ", KAFKA_TOPICS['response'])     # added for debugging purposes
    
    Waleed Akbar's avatar
    Waleed Akbar committed
                        continue
                    elif receive_msg.error():
                        if receive_msg.error().code() == KafkaError._PARTITION_EOF:
                            continue
                        else:
                            print("Consumer error: {}".format(receive_msg.error()))
                            break
    
                    try:
                        collector_id = receive_msg.key().decode('utf-8')
                        if collector_id in ACTIVE_COLLECTORS:
                            (kpi_id, kpi_value) = ast.literal_eval(receive_msg.value().decode('utf-8'))
    
                            self.process_response(collector_id, kpi_id, kpi_value)
    
                        else:
                            print(f"collector id does not match.\nRespone ID: '{collector_id}' --- Active IDs: '{ACTIVE_COLLECTORS}' ")
                    except Exception as e:
                        print(f"No message key found: {str(e)}")
                        continue
                        # return None
    
        def process_response(self, collector_id: str, kpi_id: str, kpi_value: Any):
            if kpi_id == "-1" and kpi_value == -1:
                # LOGGER.info("Sucessfully terminated Collector: {:}".format(collector_id))
                print ("Sucessfully terminated Collector: ", collector_id)
            else:
                print ("Frontend-Received values Collector Id:", collector_id, "-KPI:", kpi_id, "-VALUE:", kpi_value)
    
        @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
        def delivery_callback(self, err, msg):
            """
            Callback function to handle message delivery status.
            Args:
                err (KafkaError): Kafka error object.
                msg (Message): Kafka message object.
            """
            if err:
                print(f'Message delivery failed: {err}')
            else:
    
    Waleed Akbar's avatar
    Waleed Akbar committed
                print(f'Message delivered to topic {msg.topic()}')
    
        @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
        def StopCollector(self, 
                          request : CollectorId, grpc_context: grpc.ServicerContext # type: ignore
                         ) -> Empty:  # type: ignore
    
            LOGGER.info ("gRPC message: {:}".format(request))
            _collector_id = request.collector_id.uuid
            self.publish_to_kafka_request_topic(_collector_id, "", -1, -1)
    
    Waleed Akbar's avatar
    Waleed Akbar committed
            return Empty()
    
        @safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
        def SelectCollectors(self, 
                             request : CollectorFilter, contextgrpc_context: grpc.ServicerContext # type: ignore
                            ) -> CollectorList:  # type: ignore
    
            LOGGER.info("gRPC message: {:}".format(request))
    
    Waleed Akbar's avatar
    Waleed Akbar committed
            response = CollectorList()
    
            filter_to_apply = dict()
            filter_to_apply['kpi_id']       = request.kpi_id[0].kpi_id.uuid
            # filter_to_apply['duration_s'] = request.duration_s[0]
            try:
                rows = self.managementDBobj.select_with_filter(CollectorModel, **filter_to_apply)
            except Exception as e:
                LOGGER.info('Unable to apply filter on kpi descriptor. {:}'.format(e))
            try:
                if len(rows) != 0:
                    for row in rows:
                        collector_obj = Collector()
                        collector_obj.collector_id.collector_id.uuid = row.collector_id
                        response.collector_list.append(collector_obj)
                return response
            except Exception as e:
                LOGGER.info('Unable to process response {:}'.format(e))