Newer
Older
# Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from datetime import datetime
delacal
committed
from datetime import timedelta
from multiprocessing import Process
from multiprocessing import Value
from common.proto.l3_centralizedattackdetector_pb2 import Empty, AutoFeatures
from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer
from common.proto.l3_attackmitigator_pb2 import L3AttackmitigatorOutput
from common.proto.monitoring_pb2 import KpiDescriptor
from common.proto.kpi_sample_types_pb2 import KpiSampleType
from monitoring.client.MonitoringClient import MonitoringClient
from common.proto.monitoring_pb2 import Kpi
delacal
committed
delacal
committed
from common.tools.timestamp.Converters import timestamp_utcnow_to_float
from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient
delacal
committed
import uuid
import sklearn.metrics as metrics
import numpy as np
from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method
delacal
committed
current_dir = os.path.dirname(os.path.abspath(__file__))
# Demo constants
DEMO_MODE = True
ATTACK_IPS = ["37.187.95.110", "91.121.140.167", "94.23.23.52", "94.23.247.226", "149.202.83.171"]
delacal
committed
TIME_START = time.time()
METRICS_POOL = MetricsPool('l3_centralizedattackdetector', 'RPC')
class SamplingMode(Enum):
FIRST = 1
LAST = 2
RANDOM = 3
class ConnectionInfo:
def __init__(self, ip_o, port_o, ip_d, port_d):
self.ip_o = ip_o
self.port_o = port_o
self.ip_d = ip_d
self.port_d = port_d
def __eq__(self, other):
return (
self.ip_o == other.ip_o
and self.port_o == other.port_o
and self.ip_d == other.ip_d
and self.port_d == other.port_d
)
def __str__(self):
return "ip_o: " + self.ip_o + "\nport_o: " + self.port_o + "\nip_d: " + self.ip_d + "\nport_d: " + self.port_d
class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer):
"""
Initialize variables, prediction model and clients of components used by CAD
LOGGER.info("Creating Centralized Attack Detector Service - Scalability Experiment 3")
self.inference_values = []
self.inference_results = []
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
self.cryptomining_detector_path = os.path.join(current_dir, "ml_model/cryptomining_detector/")
self.cryptomining_detector_file_name = os.listdir(self.cryptomining_detector_path)[0]
self.cryptomining_detector_model_path = os.path.join(
self.cryptomining_detector_path, self.cryptomining_detector_file_name
)
self.cryptomining_detector_model = rt.InferenceSession(self.cryptomining_detector_model_path)
# Load cryptomining detector features metadata from ONNX file
self.cryptomining_detector_features_metadata = list(
self.cryptomining_detector_model.get_modelmeta().custom_metadata_map.values()
)
self.cryptomining_detector_features_metadata = [float(x) for x in self.cryptomining_detector_features_metadata]
self.cryptomining_detector_features_metadata.sort()
LOGGER.info("Cryptomining Detector Features: " + str(self.cryptomining_detector_features_metadata))
self.input_name = self.cryptomining_detector_model.get_inputs()[0].name
self.label_name = self.cryptomining_detector_model.get_outputs()[0].name
self.prob_name = self.cryptomining_detector_model.get_outputs()[1].name
# Kpi values
self.l3_security_status = 0 # unnecessary
self.l3_ml_model_confidence = 0
self.l3_inferences_in_interval_counter = 0
self.l3_ml_model_confidence_normal = 0
self.l3_inferences_in_interval_counter_normal = 0
self.l3_ml_model_confidence_crypto = 0
self.l3_inferences_in_interval_counter_crypto = 0
self.l3_attacks = []
self.l3_unique_attack_conns = 0
self.l3_unique_compromised_clients = 0
self.l3_unique_attackers = 0
self.l3_non_empty_time_interval = False
self.monitoring_client = MonitoringClient()
self.service_ids = []
self.monitored_kpis = {
"l3_security_status": {
"kpi_id": None,
"description": "L3 - Confidence of the cryptomining detector in the security status in the last time interval of the service {service_id}",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_SECURITY_STATUS_CRYPTO,
"service_ids": [],
},
"l3_ml_model_confidence": {
"kpi_id": None,
"description": "L3 - Security status of the service in a time interval of the service {service_id} (“0” if no attack has been detected on the service and “1” if a cryptomining attack has been detected)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_ML_CONFIDENCE,
"service_ids": [],
},
"l3_unique_attack_conns": {
"kpi_id": None,
"description": "L3 - Number of attack connections detected in a time interval of the service {service_id} (attacks of the same connection [origin IP, origin port, destination IP and destination port] are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACK_CONNS,
"service_ids": [],
},
"l3_unique_compromised_clients": {
"kpi_id": None,
"description": "L3 - Number of unique compromised clients of the service in a time interval of the service {service_id} (attacks from the same origin IP are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_COMPROMISED_CLIENTS,
"service_ids": [],
},
"l3_unique_attackers": {
"kpi_id": None,
"description": "L3 - number of unique attackers of the service in a time interval of the service {service_id} (attacks from the same destination IP are only considered once)",
delacal
committed
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACKERS,
"service_ids": [],
},
}
self.attackmitigator_client = l3_attackmitigatorClient()
# Environment variables
self.CLASSIFICATION_THRESHOLD = os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5)
self.MONITORED_KPIS_TIME_INTERVAL_AGG = os.getenv("MONITORED_KPIS_TIME_INTERVAL_AGG", 60)
# Constants
self.NORMAL_CLASS = 0
self.CRYPTO_CLASS = 1
self.kpi_test = None
self.time_interval_start = None
self.time_interval_end = None
# CAD evaluation tests
self.cad_inference_times = []
self.cad_num_inference_measurements = 100
# AM evaluation tests
self.am_notification_times = []
# List of attack connections
self.attack_connections = []
self.replica_uuid = uuid.uuid4()
self.correct_attack_conns = 0
self.correct_predictions = 0
self.attack_connections_len = Value('f', 0) # Must use multiprocessing.Value to share values between processes
self.total_predictions = Value('f', 0)
self.false_positives = Value('f', 0)
self.false_negatives = Value('f', 0)
self.overall_detection_acc = Value('f', 0)
self.cryptomining_attack_detection_acc = Value('f', 0)
self.confidence = Value('f', 0)
# sklearn metrics
self.f1_score_macro = Value('f', 0)
self.f1_score_weighted = Value('f', 0)
self.balanced_accuracy = Value('f', 0)
self.precision_score = Value('f', 0)
self.recall_score = Value('f', 0)
self.y_true = []
self.y_pred = []
self.time_to_stabilize = 2
self.sampling_rate = 0.8
"""
Create a monitored KPI for a specific service and add it to the Monitoring Client
-input:
+ service_id: service ID where the KPI will be monitored
delacal
committed
+ kpi_description: description of the KPI
+ kpi_sample_type: KPI sample type of the KPI (it must be defined in the kpi_sample_types.proto file)
-output: KPI identifier representing the KPI
"""
delacal
committed
def create_kpi(
delacal
committed
self,
service_id,
kpi_name,
kpi_description,
kpi_sample_type,
delacal
committed
):
delacal
committed
kpidescriptor = KpiDescriptor()
kpidescriptor.kpi_description = kpi_description
kpidescriptor.service_id.service_uuid.uuid = service_id.service_uuid.uuid
kpidescriptor.kpi_sample_type = kpi_sample_type
delacal
committed
new_kpi = self.monitoring_client.SetKpi(kpidescriptor)
delacal
committed
LOGGER.info("Created KPI {}".format(kpi_name))
return new_kpi
"""
Create the monitored KPIs for a specific service, add them to the Monitoring Client and store their identifiers in the monitored_kpis dictionary
-input:
+ service_id: service ID where the KPIs will be monitored
-output: None
"""
delacal
committed
def create_kpis(self, service_id, device_id, endpoint_id):
delacal
committed
LOGGER.info("Creating KPIs for service {}".format(service_id))
# for now, all the KPIs are created for all the services from which requests are received
for kpi in self.monitored_kpis:
# generate random slice_id
slice_id = SliceId()
slice_id.slice_uuid.uuid = str(uuid.uuid4())
delacal
committed
# generate random connection_id
connection_id = ConnectionId()
connection_id.connection_uuid.uuid = str(uuid.uuid4())
delacal
committed
created_kpi = self.create_kpi(
service_id,
delacal
committed
kpi,
delacal
committed
self.monitored_kpis[kpi]["description"].format(service_id=service_id.service_uuid.uuid),
self.monitored_kpis[kpi]["kpi_sample_type"],
)
self.monitored_kpis[kpi]["kpi_id"] = created_kpi.kpi_id
self.monitored_kpis[kpi]["service_ids"].append(service_id.service_uuid.uuid)
LOGGER.info("Created KPIs for service {}".format(service_id))
def monitor_kpis(self):
monitor_inference_results = self.inference_results
monitor_service_ids = self.service_ids
self.assign_timestamp(monitor_inference_results)
non_empty_time_interval = self.l3_non_empty_time_interval
if non_empty_time_interval:
for service_id in monitor_service_ids:
#LOGGER.debug("service_id: {}".format(service_id))
self.monitor_compute_l3_kpi(service_id, monitor_inference_results)
# Demo mode inference results are erased
"""if DEMO_MODE:
# Delete fist half of the inference results
LOGGER.debug("inference_results len: {}".format(len(self.inference_results)))
self.inference_results = self.inference_results[len(self.inference_results)//2:]
LOGGER.debug("inference_results len after erase: {}".format(len(self.inference_results)))"""
# end = time.time()
# LOGGER.debug("Time to process inference results with erase: {}".format(end - start))
LOGGER.debug("KPIs sent to monitoring server\n")
else:
LOGGER.debug("No KPIs sent to monitoring server")
def assign_timestamp(self, monitor_inference_results):
time_interval = self.MONITORED_KPIS_TIME_INTERVAL_AGG
# assign the timestamp of the first inference result to the time_interval_start
if self.time_interval_start is None:
self.time_interval_start = monitor_inference_results[0]["timestamp"]
#LOGGER.debug("self.time_interval_start: {}".format(self.time_interval_start))
# add time_interval to the current time to get the time interval end
#LOGGER.debug("time_interval: {}".format(time_interval))
#LOGGER.debug(timedelta(seconds=time_interval))
self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)
current_time = datetime.utcnow()
#LOGGER.debug("current_time: {}".format(current_time))
if current_time >= self.time_interval_end:
self.time_interval_start = self.time_interval_end
self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)
self.l3_security_status = 0 # unnecessary
self.l3_ml_model_confidence = 0
self.l3_inferences_in_interval_counter = 0
self.l3_ml_model_confidence_normal = 0
self.l3_inferences_in_interval_counter_normal = 0
self.l3_ml_model_confidence_crypto = 0
self.l3_inferences_in_interval_counter_crypto = 0
self.l3_attacks = []
self.l3_unique_attack_conns = 0
self.l3_unique_compromised_clients = 0
self.l3_unique_attackers = 0
self.l3_non_empty_time_interval = False
#LOGGER.debug("time_interval_start: {}".format(self.time_interval_start))
#LOGGER.debug("time_interval_end: {}".format(self.time_interval_end))
def monitor_compute_l3_kpi(self, service_id, monitor_inference_results):
# L3 security status
kpi_security_status = Kpi()
kpi_security_status.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_security_status"]["kpi_id"])
kpi_security_status.kpi_value.int32Val = self.l3_security_status
# L3 ML model confidence
kpi_conf = Kpi()
kpi_conf.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_ml_model_confidence"]["kpi_id"])
kpi_conf.kpi_value.floatVal = self.monitor_ml_model_confidence()
# L3 unique attack connections
kpi_unique_attack_conns = Kpi()
kpi_unique_attack_conns.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"])
kpi_unique_attack_conns.kpi_value.int32Val = self.l3_unique_attack_conns
# L3 unique compromised clients
kpi_unique_compromised_clients = Kpi()
kpi_unique_compromised_clients.kpi_id.kpi_id.CopyFrom(
self.monitored_kpis["l3_unique_compromised_clients"]["kpi_id"]
)
kpi_unique_compromised_clients.kpi_value.int32Val = self.l3_unique_compromised_clients
# L3 unique attackers
kpi_unique_attackers = Kpi()
kpi_unique_attackers.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attackers"]["kpi_id"])
kpi_unique_attackers.kpi_value.int32Val = self.l3_unique_attackers
timestamp = Timestamp()
timestamp.timestamp = timestamp_utcnow_to_float()
kpi_security_status.timestamp.CopyFrom(timestamp)
kpi_conf.timestamp.CopyFrom(timestamp)
kpi_unique_attack_conns.timestamp.CopyFrom(timestamp)
kpi_unique_compromised_clients.timestamp.CopyFrom(timestamp)
kpi_unique_attackers.timestamp.CopyFrom(timestamp)
LOGGER.debug("Sending KPIs to monitoring server")
'''LOGGER.debug("kpi_security_status: {}".format(kpi_security_status))
LOGGER.debug("kpi_conf: {}".format(kpi_conf))
LOGGER.debug("kpi_unique_attack_conns: {}".format(kpi_unique_attack_conns))
LOGGER.debug("kpi_unique_compromised_clients: {}".format(kpi_unique_compromised_clients))
LOGGER.debug("kpi_unique_attackers: {}".format(kpi_unique_attackers))'''
try:
self.monitoring_client.IncludeKpi(kpi_security_status)
self.monitoring_client.IncludeKpi(kpi_conf)
self.monitoring_client.IncludeKpi(kpi_unique_attack_conns)
self.monitoring_client.IncludeKpi(kpi_unique_compromised_clients)
self.monitoring_client.IncludeKpi(kpi_unique_attackers)
except Exception as e:
LOGGER.debug("Error sending KPIs to monitoring server: {}".format(e))
def monitor_ml_model_confidence(self):
if self.l3_security_status == 0:
return self.l3_ml_model_confidence_normal
return self.l3_ml_model_confidence_crypto
"""
Classify connection as standard traffic or cryptomining attack and return results
-input:
+ request: L3CentralizedattackdetectorMetrics object with connection features information
-output: L3AttackmitigatorOutput object with information about the assigned class and prediction confidence
"""
def perform_distributed_inference(self, requests):
batch_size = len(requests)
# Create an empty array to hold the input data
x_data = np.empty((batch_size, len(requests[0].features)))
# Fill in the input data array with features from each request
for i, request in enumerate(requests):
x_data[i] = [feature.feature for feature in request.features]
LOGGER.debug("x_data.shape: {}".format(x_data.shape))
inference_time_start = time.perf_counter()
# Perform inference
predictions = self.cryptomining_detector_model.run(
[self.prob_name], {self.input_name: x_data.astype(np.float32)}
)[0]
inference_time_end = time.perf_counter()
# Measure inference time
inference_time = inference_time_end - inference_time_start
self.cad_inference_times.append(inference_time)
if len(self.cad_inference_times) > self.cad_num_inference_measurements:
inference_times_np_array = np.array(self.cad_inference_times)
np.save(f"inference_times_{batch_size}.npy", inference_times_np_array)
avg_inference_time = np.mean(inference_times_np_array)
max_inference_time = np.max(inference_times_np_array)
min_inference_time = np.min(inference_times_np_array)
std_inference_time = np.std(inference_times_np_array)
median_inference_time = np.median(inference_times_np_array)
LOGGER.debug("Average inference time: {}".format(avg_inference_time))
LOGGER.debug("Max inference time: {}".format(max_inference_time))
LOGGER.debug("Min inference time: {}".format(min_inference_time))
LOGGER.debug("Standard deviation inference time: {}".format(std_inference_time))
LOGGER.debug("Median inference time: {}".format(median_inference_time))
with open(f"inference_times_stats_{batch_size}.txt", "w") as f:
f.write("Average inference time: {}\n".format(avg_inference_time))
f.write("Max inference time: {}\n".format(max_inference_time))
f.write("Min inference time: {}\n".format(min_inference_time))
f.write("Standard deviation inference time: {}\n".format(std_inference_time))
f.write("Median inference time: {}\n".format(median_inference_time))
# Gather the predicted class, the probability of that class and other relevant information required to block the attack
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
output_messages = []
for i, request in enumerate(requests):
output_messages.append({
"confidence": None,
"timestamp": datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
"ip_o": request.connection_metadata.ip_o,
"ip_d": request.connection_metadata.ip_d,
"tag_name": None,
"tag": None,
"flow_id": request.connection_metadata.flow_id,
"protocol": request.connection_metadata.protocol,
"port_o": request.connection_metadata.port_o,
"port_d": request.connection_metadata.port_d,
"ml_id": self.cryptomining_detector_file_name,
"service_id": request.connection_metadata.service_id,
"endpoint_id": request.connection_metadata.endpoint_id,
"time_start": request.connection_metadata.time_start,
"time_end": request.connection_metadata.time_end,
})
if predictions[i][1] >= self.CLASSIFICATION_THRESHOLD:
output_messages[i]["confidence"] = predictions[i][1]
output_messages[i]["tag_name"] = "Crypto"
output_messages[i]["tag"] = self.CRYPTO_CLASS
else:
output_messages[i]["confidence"] = predictions[i][0]
output_messages[i]["tag_name"] = "Normal"
output_messages[i]["tag"] = self.NORMAL_CLASS
"""
Receive features from Attack Mitigator, predict attack and communicate with Attack Mitigator
-input:
+ request: L3CentralizedattackdetectorMetrics object with connection features information
-output: Empty object with a message about the execution of the function
"""
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def AnalyzeConnectionStatistics(self, request, context):
# Perform inference with the data sent in the request
self.active_requests.append(request)
if len(self.active_requests) == BATCH_SIZE:
csv_file_path = 'hola_mundo.csv'
col_values = [1, 2, 3]
with open(csv_file_path, 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow(col_values)
logging.debug("Performing inference... {}".format(self.replica_uuid))
inference_time_start = time.time()
cryptomining_detector_output = self.perform_distributed_inference(self.active_requests)
inference_time_end = time.time()
LOGGER.debug("Inference performed in {} seconds".format(inference_time_end - inference_time_start))
logging.info("Inference performed correctly")
self.inference_results.append({"output": cryptomining_detector_output, "timestamp": datetime.now()})
LOGGER.debug("inference_results length: {}".format(len(self.inference_results)))
for i, req in enumerate(self.active_requests):
service_id = req.connection_metadata.service_id
device_id = req.connection_metadata.endpoint_id.device_id
endpoint_id = req.connection_metadata.endpoint_id
# Check if a request of a new service has been received and, if so, create the monitored KPIs for that service
if service_id not in self.service_ids:
self.create_kpis(service_id, device_id, endpoint_id)
self.service_ids.append(service_id)
monitor_kpis_start = time.time()
self.monitor_kpis()
monitor_kpis_end = time.time()
LOGGER.debug("Monitoring KPIs performed in {} seconds".format(monitor_kpis_end - monitor_kpis_start))
LOGGER.debug("cryptomining_detector_output: {}".format(cryptomining_detector_output[i]))
if DEMO_MODE:
self.confidence.value = cryptomining_detector_output[i]["confidence"]
self.analyze_prediction_accuracy()
connection_info = ConnectionInfo(
req.connection_metadata.ip_o,
req.connection_metadata.port_o,
req.connection_metadata.ip_d,
req.connection_metadata.port_d,
)
self.l3_non_empty_time_interval = True
if cryptomining_detector_output[i]["tag_name"] == "Crypto":
self.l3_security_status = 1
self.l3_inferences_in_interval_counter_crypto += 1
self.l3_ml_model_confidence_crypto = (
self.l3_ml_model_confidence_crypto * (self.l3_inferences_in_interval_counter_crypto - 1)
+ cryptomining_detector_output[i]["confidence"]
) / self.l3_inferences_in_interval_counter_crypto
if connection_info not in self.l3_attacks:
self.l3_attacks.append(connection_info)
self.l3_unique_attack_conns += 1
self.l3_unique_compromised_clients = len(set([conn.ip_o for conn in self.l3_attacks]))
self.l3_unique_attackers = len(set([conn.ip_d for conn in self.l3_attacks]))
else:
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
self.l3_inferences_in_interval_counter_normal += 1
self.l3_ml_model_confidence_normal = (
self.l3_ml_model_confidence_normal * (self.l3_inferences_in_interval_counter_normal - 1)
+ cryptomining_detector_output[i]["confidence"]
) / self.l3_inferences_in_interval_counter_normal
# Only notify Attack Mitigator when a cryptomining connection has been detected
if cryptomining_detector_output[i]["tag_name"] == "Crypto":
if DEMO_MODE:
self.attack_connections.append(connection_info)
# Calculate F1 score
self.y_pred.append(1)
if connection_info.ip_o in ATTACK_IPS or connection_info.ip_d in ATTACK_IPS:
self.correct_attack_conns += 1
self.correct_predictions += 1
self.y_true.append(1)
else:
LOGGER.debug("False positive: {}".format(connection_info))
self.false_positives.value = self.false_positives.value + 1
self.y_true.append(0)
self.total_predictions.value = self.total_predictions.value + 1
# if False:
notification_time_start = time.perf_counter()
LOGGER.debug("Crypto attack detected")
# Notify the Attack Mitigator component about the attack
logging.info(
"Notifying the Attack Mitigator component about the attack in order to block the connection..."
)
try:
logging.info("Sending the connection information to the Attack Mitigator component...")
message = L3AttackmitigatorOutput(**cryptomining_detector_output[i])
response = self.attackmitigator_client.PerformMitigation(message)
notification_time_end = time.perf_counter()
self.am_notification_times.append(notification_time_end - notification_time_start)
LOGGER.debug(f"am_notification_times length: {len(self.am_notification_times)}")
LOGGER.debug(f"last am_notification_time: {self.am_notification_times[-1]}")
if len(self.am_notification_times) > 100:
am_notification_times_np_array = np.array(self.am_notification_times)
np.save("am_notification_times.npy", am_notification_times_np_array)
avg_notification_time = np.mean(am_notification_times_np_array)
max_notification_time = np.max(am_notification_times_np_array)
min_notification_time = np.min(am_notification_times_np_array)
std_notification_time = np.std(am_notification_times_np_array)
median_notification_time = np.median(am_notification_times_np_array)
LOGGER.debug("Average notification time: {}".format(avg_notification_time))
LOGGER.debug("Max notification time: {}".format(max_notification_time))
LOGGER.debug("Min notification time: {}".format(min_notification_time))
LOGGER.debug("Std notification time: {}".format(std_notification_time))
LOGGER.debug("Median notification time: {}".format(median_notification_time))
with open("am_notification_times_stats.txt", "w") as f:
f.write("Average notification time: {}\n".format(avg_notification_time))
f.write("Max notification time: {}\n".format(max_notification_time))
f.write("Min notification time: {}\n".format(min_notification_time))
f.write("Std notification time: {}\n".format(std_notification_time))
f.write("Median notification time: {}\n".format(median_notification_time))
# logging.info("Attack Mitigator notified and received response: ", response.message) # FIX No message received
logging.info("Attack Mitigator notified")
#return Empty(message="OK, information received and mitigator notified abou the attack")
except Exception as e:
logging.error("Error notifying the Attack Mitigator component about the attack: ", e)
logging.error("Couldn't find l3_attackmitigator")
return Empty(message="Attack Mitigator not found")
else:
logging.info("No attack detected")
if cryptomining_detector_output[i]["tag_name"] != "Crypto":
self.y_pred.append(0)
if connection_info.ip_o not in ATTACK_IPS and connection_info.ip_d not in ATTACK_IPS:
self.correct_predictions += 1
self.y_true.append(0)
else:
LOGGER.debug("False negative: {}".format(connection_info))
self.false_negatives.value = self.false_negatives.value + 1
self.y_true.append(1)
self.total_predictions.value = self.total_predictions.value + 1
# return Empty(message="Ok, information received (no attack detected)")
self.active_requests = []
return Empty(message="Ok, metrics processed")
return Empty(message="Ok, information received")
def analyze_prediction_accuracy(self):
#LOGGER.info("Number of Attack Connections Correctly Classified: {}".format(self.correct_attack_conns))
#LOGGER.info("Number of Attack Connections: {}".format(len(self.attack_connections)))
if self.total_predictions.value > 0:
self.overall_detection_acc.value = self.correct_predictions / self.total_predictions.value
else:
self.overall_detection_acc.value = 0
#LOGGER.info("Overall Detection Accuracy: {}\n".format(self.overall_detection_acc.value))
if len(self.attack_connections) > 0:
self.cryptomining_attack_detection_acc.value = self.correct_attack_conns / len(self.attack_connections)
else:
self.cryptomining_attack_detection_acc.value = 0
#LOGGER.info("Cryptomining Attack Detection Accuracy: {}".format(self.cryptomining_attack_detection_acc.value))
#LOGGER.info("Cryptomining Detector Confidence: {}".format(self.confidence.value))
#LOGGER.info("Time elapsed: {}".format(time.time() - TIME_START))
self.attack_connections_len.value = len(self.attack_connections)
self.f1_score_macro.value = metrics.f1_score(self.y_true, self.y_pred, average="macro")
self.f1_score_weighted.value = metrics.f1_score(self.y_true, self.y_pred, average="weighted")
self.balanced_accuracy.value = metrics.balanced_accuracy_score(self.y_true, self.y_pred)
self.precision_score.value = metrics.precision_score(self.y_true, self.y_pred, average="macro")
self.recall_score.value = metrics.recall_score(self.y_true, self.y_pred, average="macro")
with open("prediction_accuracy.txt", "a") as f:
#LOGGER.debug("Exporting prediction accuracy and confidence")
f.write("Overall Detection Accuracy: {}\n".format(self.overall_detection_acc.value))
f.write("Cryptomining Attack Detection Accuracy: {}\n".format(self.cryptomining_attack_detection_acc.value))
f.write("Total Predictions: {}\n".format(self.total_predictions.value))
f.write("Total Positives: {}\n".format(len(self.attack_connections)))
f.write("False Positives: {}\n".format(self.false_positives.value))
f.write("True Negatives: {}\n".format(self.total_predictions.value - len(self.attack_connections)))
f.write("False Negatives: {}\n".format(self.false_negatives.value))
f.write("Cryptomining Detector Confidence: {}\n\n".format(self.confidence.value))
f.write("Timestamp: {}\n".format(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
def generate_accuracy_scalability_csv(self):
LOGGER.debug("Starting async prediction accuracy analysis exp 3")
LOGGER.debug("Correct csv load: {}".format(os.path.exists("/var/teraflow/scalability_accuracy.csv")))
timestamp_start = datetime.now().strftime("%d/%m/%Y-%H:%M:%S")
# Wait for the system to stabilize
time.sleep(self.time_to_stabilize * 60)
np.save("y_true_snapshots_{}_rate_{}_mode_{}_time_to_stabilize_{}_exp3.npy".format(self.sampling_snapshots, self.sampling_rate, self.sampling_mode, self.time_to_stabilize), self.y_true)
np.save("y_pred_snapshots_{}_rate_{}_mode_{}_time_to_stabilize_{}_exp3.npy".format(self.sampling_snapshots, self.sampling_rate, self.sampling_mode, self.time_to_stabilize), self.y_pred)
LOGGER.debug("Scalability csv started")
with open("/var/teraflow/scalability_accuracy.csv", 'a', newline='') as f:
spamwriter = csv.writer(f, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL)
# F1_SCORE_MACRO F1_SCORE_WEIGHTED BALANCED_ACCURACY PRECISION_SCORE RECALL_SCORE OVERALL_ACCURACY CRYPTO_ACCURACY TOTAL_PREDICTIONS TOTAL_POSITIVES F_POSITIVES T_NEGATIVES F_NEGATIVES CONFIDENCE TIMESTAMP_START TIMESTAMP_FINISH SAMPLING_SNAPSHOTS SAMPLING_RATE SAMPLING_MODE TIME_TO_STABILIZE
'''spamwriter.writerow(['F1_SCORE_MACRO', 'F1_SCORE_WEIGHTED', 'BALANCED_ACCURACY', 'PRECISION_SCORE',
'RECALL_SCORE', 'OVERALL_ACCURACY', 'CRYPTO_ACCURACY',
'TOTAL_PREDICTIONS', 'TOTAL_POSITIVES', 'F_POSITIVES',
'T_NEGATIVES', 'F_NEGATIVES', 'CONFIDENCE', 'TIMESTAMP_START', 'TIMESTAMP_FINISH',
'SAMPLING_SNAPSHOTS', 'SAMPLING_RATE', 'SAMPLING_MODE', 'TIME_TO_STABILIZE'])'''
spamwriter.writerow([self.f1_score_macro.value, self.f1_score_weighted.value, self.balanced_accuracy.value,
self.precision_score.value, self.recall_score.value, self.overall_detection_acc.value, self.cryptomining_attack_detection_acc.value,
self.total_predictions.value, self.attack_connections_len.value, self.false_positives.value,
self.total_predictions.value - self.attack_connections_len.value, self.false_negatives.value,
self.confidence.value, timestamp_start, datetime.now().strftime("%d/%m/%Y-%H:%M:%S"),
self.sampling_snapshots, self.sampling_rate, self.sampling_mode, self.time_to_stabilize])
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def GetScalabilityConfig(self, request, context):
LOGGER.info("Received scalability config request for Exp 3")
self.time_to_stabilize = request.time_to_stabilize
self.sampling_snapshots = request.sampling_snapshots
self.sampling_rate = request.sampling_rate
if request.sampling_mode == SamplingMode.RANDOM.value:
elif request.sampling_mode == SamplingMode.FIRST.value:
self.sampling_mode = "First"
else:
self.sampling_mode = "Last"
LOGGER.debug("Sampling snapshots: {}".format(self.sampling_snapshots))
LOGGER.debug("Sampling rate: {}".format(self.sampling_rate))
LOGGER.debug("Sampling mode: {}".format(self.sampling_mode))
# Start process to generate accuracy scalability csv asynchronically
p = Process(target=self.generate_accuracy_scalability_csv)
p.start()
return Empty(message="CSV generated")
def AnalyzeBatchConnectionStatistics(self, request, context):
batch_time_start = time.time()
for metric in request.metrics:
self.AnalyzeConnectionStatistics(metric, context)
batch_time_end = time.time()
with open("batch_time.txt", "a") as f:
f.write(str(len(request.metrics)) + "\n")
f.write(str(batch_time_end - batch_time_start) + "\n\n")
f.close()
#logging.debug("Metrics: " + str(len(request.metrics)))
#logging.debug("Batch time: " + str(batch_time_end - batch_time_start))
return Empty(message="OK, information received.")
"""
Send features allocated in the metadata of the onnx file to the DAD
-output: ONNX metadata as a list of integers
"""
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def GetFeaturesIds(self, request: Empty, context):