Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
# Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from datetime import datetime
from datetime import timedelta
import os
import numpy as np
import onnxruntime as rt
import logging
import time
import csv
from multiprocessing import Process
from multiprocessing import Value
from common.proto.l3_centralizedattackdetector_pb2 import Empty, AutoFeatures
from common.proto.l3_centralizedattackdetector_pb2_grpc import L3CentralizedattackdetectorServicer
from common.proto.l3_attackmitigator_pb2 import L3AttackmitigatorOutput
from common.proto.monitoring_pb2 import KpiDescriptor
from common.proto.kpi_sample_types_pb2 import KpiSampleType
from monitoring.client.MonitoringClient import MonitoringClient
from common.proto.monitoring_pb2 import Kpi
from common.tools.timestamp.Converters import timestamp_utcnow_to_float
from common.proto.context_pb2 import Timestamp, SliceId, ConnectionId
from l3_attackmitigator.client.l3_attackmitigatorClient import l3_attackmitigatorClient
import uuid
import sklearn.metrics as metrics
import numpy as np
from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method
LOGGER = logging.getLogger(__name__)
current_dir = os.path.dirname(os.path.abspath(__file__))
# Demo constants
DEMO_MODE = True
ATTACK_IPS = ["37.187.95.110", "91.121.140.167", "94.23.23.52", "94.23.247.226", "149.202.83.171"]
TIME_START = time.time()
METRICS_POOL = MetricsPool('l3_centralizedattackdetector', 'RPC')
class ConnectionInfo:
def __init__(self, ip_o, port_o, ip_d, port_d):
self.ip_o = ip_o
self.port_o = port_o
self.ip_d = ip_d
self.port_d = port_d
def __eq__(self, other):
return (
self.ip_o == other.ip_o
and self.port_o == other.port_o
and self.ip_d == other.ip_d
and self.port_d == other.port_d
)
def __str__(self):
return "ip_o: " + self.ip_o + "\nport_o: " + self.port_o + "\nip_d: " + self.ip_d + "\nport_d: " + self.port_d
class l3_centralizedattackdetectorServiceServicerImpl(L3CentralizedattackdetectorServicer):
"""
Initialize variables, prediction model and clients of components used by CAD
"""
def __init__(self):
LOGGER.info("Creating Centralized Attack Detector Service - Scalability Experiment 2")
self.inference_values = []
self.inference_results = []
self.cryptomining_detector_path = os.path.join(current_dir, "ml_model/cryptomining_detector/")
self.cryptomining_detector_file_name = os.listdir(self.cryptomining_detector_path)[0]
self.cryptomining_detector_model_path = os.path.join(
self.cryptomining_detector_path, self.cryptomining_detector_file_name
)
self.cryptomining_detector_model = rt.InferenceSession(self.cryptomining_detector_model_path)
# Load cryptomining detector features metadata from ONNX file
self.cryptomining_detector_features_metadata = list(
self.cryptomining_detector_model.get_modelmeta().custom_metadata_map.values()
)
self.cryptomining_detector_features_metadata = [float(x) for x in self.cryptomining_detector_features_metadata]
self.cryptomining_detector_features_metadata.sort()
LOGGER.info("Cryptomining Detector Features: " + str(self.cryptomining_detector_features_metadata))
self.input_name = self.cryptomining_detector_model.get_inputs()[0].name
self.label_name = self.cryptomining_detector_model.get_outputs()[0].name
self.prob_name = self.cryptomining_detector_model.get_outputs()[1].name
# Kpi values
self.l3_security_status = 0 # unnecessary
self.l3_ml_model_confidence = 0
self.l3_inferences_in_interval_counter = 0
self.l3_ml_model_confidence_normal = 0
self.l3_inferences_in_interval_counter_normal = 0
self.l3_ml_model_confidence_crypto = 0
self.l3_inferences_in_interval_counter_crypto = 0
self.l3_attacks = []
self.l3_unique_attack_conns = 0
self.l3_unique_compromised_clients = 0
self.l3_unique_attackers = 0
self.l3_non_empty_time_interval = False
self.monitoring_client = MonitoringClient()
self.service_ids = []
self.monitored_kpis = {
"l3_security_status": {
"kpi_id": None,
"description": "L3 - Confidence of the cryptomining detector in the security status in the last time interval of the service {service_id}",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_SECURITY_STATUS_CRYPTO,
"service_ids": [],
},
"l3_ml_model_confidence": {
"kpi_id": None,
"description": "L3 - Security status of the service in a time interval of the service {service_id} (“0” if no attack has been detected on the service and “1” if a cryptomining attack has been detected)",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_ML_CONFIDENCE,
"service_ids": [],
},
"l3_unique_attack_conns": {
"kpi_id": None,
"description": "L3 - Number of attack connections detected in a time interval of the service {service_id} (attacks of the same connection [origin IP, origin port, destination IP and destination port] are only considered once)",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACK_CONNS,
"service_ids": [],
},
"l3_unique_compromised_clients": {
"kpi_id": None,
"description": "L3 - Number of unique compromised clients of the service in a time interval of the service {service_id} (attacks from the same origin IP are only considered once)",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_COMPROMISED_CLIENTS,
"service_ids": [],
},
"l3_unique_attackers": {
"kpi_id": None,
"description": "L3 - number of unique attackers of the service in a time interval of the service {service_id} (attacks from the same destination IP are only considered once)",
"kpi_sample_type": KpiSampleType.KPISAMPLETYPE_L3_UNIQUE_ATTACKERS,
"service_ids": [],
},
}
self.attackmitigator_client = l3_attackmitigatorClient()
# Environment variables
self.CLASSIFICATION_THRESHOLD = os.getenv("CAD_CLASSIFICATION_THRESHOLD", 0.5)
self.MONITORED_KPIS_TIME_INTERVAL_AGG = os.getenv("MONITORED_KPIS_TIME_INTERVAL_AGG", 60)
# Constants
self.NORMAL_CLASS = 0
self.CRYPTO_CLASS = 1
self.kpi_test = None
self.time_interval_start = None
self.time_interval_end = None
# CAD evaluation tests
self.cad_inference_times = []
self.cad_num_inference_measurements = 100
# AM evaluation tests
self.am_notification_times = []
# List of attack connections
self.attack_connections = []
# Accuracy metrics
self.correct_attack_conns = 0
self.correct_predictions = 0
self.attack_connections_len = Value('f', 0) # Must use multiprocessing.Value to share values between processes
self.total_predictions = Value('f', 0)
self.false_positives = Value('f', 0)
self.false_negatives = Value('f', 0)
self.overall_detection_acc = Value('f', 0)
self.cryptomining_attack_detection_acc = Value('f', 0)
self.confidence = Value('f', 0)
self.f1_score_macro = Value('f', 0)
self.f1_score_weighted = Value('f', 0)
self.balanced_accuracy = Value('f', 0)
self.precision_score = Value('f', 0)
self.recall_score = Value('f', 0)
self.y_true = []
self.y_pred = []
self.max_connection_time = 60
self.time_to_stabilize = 5
"""
Create a monitored KPI for a specific service and add it to the Monitoring Client
-input:
+ service_id: service ID where the KPI will be monitored
+ kpi_name: name of the KPI
+ kpi_description: description of the KPI
+ kpi_sample_type: KPI sample type of the KPI (it must be defined in the kpi_sample_types.proto file)
-output: KPI identifier representing the KPI
"""
def create_kpi(
self,
service_id,
kpi_name,
kpi_description,
kpi_sample_type,
):
kpidescriptor = KpiDescriptor()
kpidescriptor.kpi_description = kpi_description
kpidescriptor.service_id.service_uuid.uuid = service_id.service_uuid.uuid
kpidescriptor.kpi_sample_type = kpi_sample_type
new_kpi = self.monitoring_client.SetKpi(kpidescriptor)
LOGGER.info("Created KPI {}".format(kpi_name))
return new_kpi
"""
Create the monitored KPIs for a specific service, add them to the Monitoring Client and store their identifiers in the monitored_kpis dictionary
-input:
+ service_id: service ID where the KPIs will be monitored
-output: None
"""
def create_kpis(self, service_id, device_id, endpoint_id):
LOGGER.info("Creating KPIs for service {}".format(service_id))
# for now, all the KPIs are created for all the services from which requests are received
for kpi in self.monitored_kpis:
# generate random slice_id
slice_id = SliceId()
slice_id.slice_uuid.uuid = str(uuid.uuid4())
# generate random connection_id
connection_id = ConnectionId()
connection_id.connection_uuid.uuid = str(uuid.uuid4())
created_kpi = self.create_kpi(
service_id,
kpi,
self.monitored_kpis[kpi]["description"].format(service_id=service_id.service_uuid.uuid),
self.monitored_kpis[kpi]["kpi_sample_type"],
)
self.monitored_kpis[kpi]["kpi_id"] = created_kpi.kpi_id
self.monitored_kpis[kpi]["service_ids"].append(service_id.service_uuid.uuid)
LOGGER.info("Created KPIs for service {}\n".format(service_id))
def monitor_kpis(self):
monitor_inference_results = self.inference_results
monitor_service_ids = self.service_ids
self.assign_timestamp(monitor_inference_results)
non_empty_time_interval = self.l3_non_empty_time_interval
if non_empty_time_interval:
for service_id in monitor_service_ids:
#LOGGER.debug("service_id: {}".format(service_id))
self.monitor_compute_l3_kpi(service_id, monitor_inference_results)
# Demo mode inference results are erased
"""if DEMO_MODE:
# Delete fist half of the inference results
LOGGER.debug("inference_results len: {}".format(len(self.inference_results)))
self.inference_results = self.inference_results[len(self.inference_results)//2:]
LOGGER.debug("inference_results len after erase: {}".format(len(self.inference_results)))"""
# end = time.time()
# LOGGER.debug("Time to process inference results with erase: {}".format(end - start))
LOGGER.debug("KPIs sent to monitoring server\n")
else:
LOGGER.debug("No KPIs sent to monitoring server")
def assign_timestamp(self, monitor_inference_results):
time_interval = self.MONITORED_KPIS_TIME_INTERVAL_AGG
# assign the timestamp of the first inference result to the time_interval_start
if self.time_interval_start is None:
self.time_interval_start = monitor_inference_results[0]["timestamp"]
#LOGGER.debug("self.time_interval_start: {}".format(self.time_interval_start))
# add time_interval to the current time to get the time interval end
#LOGGER.debug("time_interval: {}".format(time_interval))
#LOGGER.debug(timedelta(seconds=time_interval))
self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)
current_time = datetime.utcnow()
#LOGGER.debug("current_time: {}".format(current_time))
if current_time >= self.time_interval_end:
self.time_interval_start = self.time_interval_end
self.time_interval_end = self.time_interval_start + timedelta(seconds=time_interval)
self.l3_security_status = 0 # unnecessary
self.l3_ml_model_confidence = 0
self.l3_inferences_in_interval_counter = 0
self.l3_ml_model_confidence_normal = 0
self.l3_inferences_in_interval_counter_normal = 0
self.l3_ml_model_confidence_crypto = 0
self.l3_inferences_in_interval_counter_crypto = 0
self.l3_attacks = []
self.l3_unique_attack_conns = 0
self.l3_unique_compromised_clients = 0
self.l3_unique_attackers = 0
self.l3_non_empty_time_interval = False
#LOGGER.debug("time_interval_start: {}".format(self.time_interval_start))
#LOGGER.debug("time_interval_end: {}".format(self.time_interval_end))
def monitor_compute_l3_kpi(self, service_id, monitor_inference_results):
# L3 security status
kpi_security_status = Kpi()
kpi_security_status.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_security_status"]["kpi_id"])
kpi_security_status.kpi_value.int32Val = self.l3_security_status
# L3 ML model confidence
kpi_conf = Kpi()
kpi_conf.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_ml_model_confidence"]["kpi_id"])
kpi_conf.kpi_value.floatVal = self.monitor_ml_model_confidence()
# L3 unique attack connections
kpi_unique_attack_conns = Kpi()
kpi_unique_attack_conns.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attack_conns"]["kpi_id"])
kpi_unique_attack_conns.kpi_value.int32Val = self.l3_unique_attack_conns
# L3 unique compromised clients
kpi_unique_compromised_clients = Kpi()
kpi_unique_compromised_clients.kpi_id.kpi_id.CopyFrom(
self.monitored_kpis["l3_unique_compromised_clients"]["kpi_id"]
)
kpi_unique_compromised_clients.kpi_value.int32Val = self.l3_unique_compromised_clients
# L3 unique attackers
kpi_unique_attackers = Kpi()
kpi_unique_attackers.kpi_id.kpi_id.CopyFrom(self.monitored_kpis["l3_unique_attackers"]["kpi_id"])
kpi_unique_attackers.kpi_value.int32Val = self.l3_unique_attackers
timestamp = Timestamp()
timestamp.timestamp = timestamp_utcnow_to_float()
kpi_security_status.timestamp.CopyFrom(timestamp)
kpi_conf.timestamp.CopyFrom(timestamp)
kpi_unique_attack_conns.timestamp.CopyFrom(timestamp)
kpi_unique_compromised_clients.timestamp.CopyFrom(timestamp)
kpi_unique_attackers.timestamp.CopyFrom(timestamp)
LOGGER.debug("Sending KPIs to monitoring server")
'''LOGGER.debug("kpi_security_status: {}".format(kpi_security_status))
LOGGER.debug("kpi_conf: {}".format(kpi_conf))
LOGGER.debug("kpi_unique_attack_conns: {}".format(kpi_unique_attack_conns))
LOGGER.debug("kpi_unique_compromised_clients: {}".format(kpi_unique_compromised_clients))
LOGGER.debug("kpi_unique_attackers: {}".format(kpi_unique_attackers))'''
try:
self.monitoring_client.IncludeKpi(kpi_security_status)
self.monitoring_client.IncludeKpi(kpi_conf)
self.monitoring_client.IncludeKpi(kpi_unique_attack_conns)
self.monitoring_client.IncludeKpi(kpi_unique_compromised_clients)
self.monitoring_client.IncludeKpi(kpi_unique_attackers)
except Exception as e:
LOGGER.debug("Error sending KPIs to monitoring server: {}".format(e))
def monitor_ml_model_confidence(self):
if self.l3_security_status == 0:
return self.l3_ml_model_confidence_normal
return self.l3_ml_model_confidence_crypto
"""
Classify connection as standard traffic or cryptomining attack and return results
-input:
+ request: L3CentralizedattackdetectorMetrics object with connection features information
-output: L3AttackmitigatorOutput object with information about the assigned class and prediction confidence
"""
def perform_inference(self, request):
x_data = np.array([[feature.feature for feature in request.features]])
# Print input data shape
#LOGGER.debug("x_data.shape: {}".format(x_data.shape))
# Get batch size
batch_size = x_data.shape[0]
# Print batch size
#LOGGER.debug("batch_size: {}".format(batch_size))
#LOGGER.debug("x_data.shape: {}".format(x_data.shape))
inference_time_start = time.perf_counter()
# Perform inference
predictions = self.cryptomining_detector_model.run(
[self.prob_name], {self.input_name: x_data.astype(np.float32)}
)[0]
inference_time_end = time.perf_counter()
# Measure inference time
inference_time = inference_time_end - inference_time_start
self.cad_inference_times.append(inference_time)
if len(self.cad_inference_times) > self.cad_num_inference_measurements:
inference_times_np_array = np.array(self.cad_inference_times)
np.save(f"inference_times_{batch_size}.npy", inference_times_np_array)
avg_inference_time = np.mean(inference_times_np_array)
max_inference_time = np.max(inference_times_np_array)
min_inference_time = np.min(inference_times_np_array)
std_inference_time = np.std(inference_times_np_array)
median_inference_time = np.median(inference_times_np_array)
'''LOGGER.debug("Average inference time: {}".format(avg_inference_time))
LOGGER.debug("Max inference time: {}".format(max_inference_time))
LOGGER.debug("Min inference time: {}".format(min_inference_time))
LOGGER.debug("Standard deviation inference time: {}".format(std_inference_time))
LOGGER.debug("Median inference time: {}".format(median_inference_time))'''
with open(f"inference_times_stats_{batch_size}.txt", "w") as f:
f.write("Average inference time: {}\n".format(avg_inference_time))
f.write("Max inference time: {}\n".format(max_inference_time))
f.write("Min inference time: {}\n".format(min_inference_time))
f.write("Standard deviation inference time: {}\n".format(std_inference_time))
f.write("Median inference time: {}\n".format(median_inference_time))
# Gather the predicted class, the probability of that class and other relevant information required to block the attack
output_message = {
"confidence": None,
"timestamp": datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
"ip_o": request.connection_metadata.ip_o,
"ip_d": request.connection_metadata.ip_d,
"tag_name": None,
"tag": None,
"flow_id": request.connection_metadata.flow_id,
"protocol": request.connection_metadata.protocol,
"port_o": request.connection_metadata.port_o,
"port_d": request.connection_metadata.port_d,
"ml_id": self.cryptomining_detector_file_name,
"service_id": request.connection_metadata.service_id,
"endpoint_id": request.connection_metadata.endpoint_id,
"time_start": request.connection_metadata.time_start,
"time_end": request.connection_metadata.time_end,
}
if predictions[0][1] >= self.CLASSIFICATION_THRESHOLD:
output_message["confidence"] = predictions[0][1]
output_message["tag_name"] = "Crypto"
output_message["tag"] = self.CRYPTO_CLASS
else:
output_message["confidence"] = predictions[0][0]
output_message["tag_name"] = "Normal"
output_message["tag"] = self.NORMAL_CLASS
return output_message
"""
Receive features from Attack Mitigator, predict attack and communicate with Attack Mitigator
-input:
+ request: L3CentralizedattackdetectorMetrics object with connection features information
-output: Empty object with a message about the execution of the function
"""
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def AnalyzeConnectionStatistics(self, request, context):
# Perform inference with the data sent in the request
logging.info("\nPerforming inference...")
inference_time_start = time.time()
cryptomining_detector_output = self.perform_inference(request)
inference_time_end = time.time()
LOGGER.debug("Inference performed in {} seconds".format(inference_time_end - inference_time_start))
logging.info("Inference performed correctly\n")
self.inference_results.append({"output": cryptomining_detector_output, "timestamp": datetime.now()})
#LOGGER.debug("inference_results length: {}".format(len(self.inference_results)))
service_id = request.connection_metadata.service_id
device_id = request.connection_metadata.endpoint_id.device_id
endpoint_id = request.connection_metadata.endpoint_id
# Check if a request of a new service has been received and, if so, create the monitored KPIs for that service
if service_id not in self.service_ids:
self.create_kpis(service_id, device_id, endpoint_id)
self.service_ids.append(service_id)
monitor_kpis_start = time.time()
self.monitor_kpis()
monitor_kpis_end = time.time()
'''LOGGER.debug("Monitoring KPIs performed in {} seconds".format(monitor_kpis_end - monitor_kpis_start))
LOGGER.debug("cryptomining_detector_output: {}".format(cryptomining_detector_output))'''
if DEMO_MODE:
self.confidence.value = cryptomining_detector_output["confidence"]
self.analyze_prediction_accuracy()
connection_info = ConnectionInfo(
request.connection_metadata.ip_o,
request.connection_metadata.port_o,
request.connection_metadata.ip_d,
request.connection_metadata.port_d,
)
self.l3_non_empty_time_interval = True
if cryptomining_detector_output["tag_name"] == "Crypto":
self.l3_security_status = 1
self.l3_inferences_in_interval_counter_crypto += 1
self.l3_ml_model_confidence_crypto = (
self.l3_ml_model_confidence_crypto * (self.l3_inferences_in_interval_counter_crypto - 1)
+ cryptomining_detector_output["confidence"]
) / self.l3_inferences_in_interval_counter_crypto
if connection_info not in self.l3_attacks:
self.l3_attacks.append(connection_info)
self.l3_unique_attack_conns += 1
self.l3_unique_compromised_clients = len(set([conn.ip_o for conn in self.l3_attacks]))
self.l3_unique_attackers = len(set([conn.ip_d for conn in self.l3_attacks]))
else:
self.l3_inferences_in_interval_counter_normal += 1
self.l3_ml_model_confidence_normal = (
self.l3_ml_model_confidence_normal * (self.l3_inferences_in_interval_counter_normal - 1)
+ cryptomining_detector_output["confidence"]
) / self.l3_inferences_in_interval_counter_normal
# Only notify Attack Mitigator when a cryptomining connection has been detected
if cryptomining_detector_output["tag_name"] == "Crypto" and connection_info not in self.attack_connections:
self.attack_connections.append(connection_info)
# Calculate F1 score
self.y_pred.append(1)
if connection_info.ip_o in ATTACK_IPS or connection_info.ip_d in ATTACK_IPS:
self.correct_attack_conns += 1
self.correct_predictions += 1
self.y_true.append(1)
else:
#LOGGER.debug("False positive: {}".format(connection_info))
self.false_positives.value = self.false_positives.value + 1
self.y_true.append(0)
self.total_predictions.value = self.total_predictions.value + 1
# if False:
notification_time_start = time.perf_counter()
LOGGER.debug("Crypto attack detected")
# Notify the Attack Mitigator component about the attack
logging.info(
"Notifying the Attack Mitigator component about the attack in order to block the connection..."
)
try:
logging.info("Sending the connection information to the Attack Mitigator component...")
message = L3AttackmitigatorOutput(**cryptomining_detector_output)
response = self.attackmitigator_client.PerformMitigation(message)
notification_time_end = time.perf_counter()
self.am_notification_times.append(notification_time_end - notification_time_start)
#LOGGER.debug(f"am_notification_times length: {len(self.am_notification_times)}")
#LOGGER.debug(f"last am_notification_time: {self.am_notification_times[-1]}")
if len(self.am_notification_times) > 100:
am_notification_times_np_array = np.array(self.am_notification_times)
np.save("am_notification_times.npy", am_notification_times_np_array)
avg_notification_time = np.mean(am_notification_times_np_array)
max_notification_time = np.max(am_notification_times_np_array)
min_notification_time = np.min(am_notification_times_np_array)
std_notification_time = np.std(am_notification_times_np_array)
median_notification_time = np.median(am_notification_times_np_array)
'''LOGGER.debug("Average notification time: {}".format(avg_notification_time))
LOGGER.debug("Max notification time: {}".format(max_notification_time))
LOGGER.debug("Min notification time: {}".format(min_notification_time))
LOGGER.debug("Std notification time: {}".format(std_notification_time))
LOGGER.debug("Median notification time: {}".format(median_notification_time))'''
with open("am_notification_times_stats.txt", "w") as f:
f.write("Average notification time: {}\n".format(avg_notification_time))
f.write("Max notification time: {}\n".format(max_notification_time))
f.write("Min notification time: {}\n".format(min_notification_time))
f.write("Std notification time: {}\n".format(std_notification_time))
f.write("Median notification time: {}\n".format(median_notification_time))
# logging.info("Attack Mitigator notified and received response: ", response.message) # FIX No message received
logging.info("Attack Mitigator notified\n")
return Empty(message="OK, information received and mitigator notified abou the attack")
except Exception as e:
logging.error("Error notifying the Attack Mitigator component about the attack: ", e)
logging.error("Couldn't find l3_attackmitigator\n")
return Empty(message="Attack Mitigator not found")
else:
logging.info("No attack detected")
if cryptomining_detector_output["tag_name"] != "Crypto":
self.y_pred.append(0)
if connection_info.ip_o not in ATTACK_IPS and connection_info.ip_d not in ATTACK_IPS:
self.correct_predictions += 1
self.y_true.append(0)
else:
#LOGGER.debug("False negative: {}".format(connection_info))
self.false_negatives.value = self.false_negatives.value + 1
self.y_true.append(1)
self.total_predictions.value = self.total_predictions.value + 1
return Empty(message="Ok, information received (no attack detected)")
def analyze_prediction_accuracy(self):
#LOGGER.info("Number of Attack Connections Correctly Classified: {}".format(self.correct_attack_conns))
#LOGGER.info("Number of Attack Connections: {}".format(len(self.attack_connections)))
if self.total_predictions.value > 0:
self.overall_detection_acc.value = self.correct_predictions / self.total_predictions.value
else:
self.overall_detection_acc.value = 0
#LOGGER.info("Overall Detection Accuracy: {}\n".format(self.overall_detection_acc.value))
if len(self.attack_connections) > 0:
self.cryptomining_attack_detection_acc.value = self.correct_attack_conns / len(self.attack_connections)
else:
self.cryptomining_attack_detection_acc.value = 0
#LOGGER.info("Cryptomining Attack Detection Accuracy: {}".format(self.cryptomining_attack_detection_acc.value))
#LOGGER.info("Cryptomining Detector Confidence: {}".format(self.confidence.value))
#LOGGER.info("Time elapsed: {}".format(time.time() - TIME_START))
self.attack_connections_len.value = len(self.attack_connections)
self.f1_score_macro.value = metrics.f1_score(self.y_true, self.y_pred, average="macro")
self.f1_score_weighted.value = metrics.f1_score(self.y_true, self.y_pred, average="weighted")
self.balanced_accuracy.value = metrics.balanced_accuracy_score(self.y_true, self.y_pred)
self.precision_score.value = metrics.precision_score(self.y_true, self.y_pred, average="macro")
self.recall_score.value = metrics.recall_score(self.y_true, self.y_pred, average="macro")
with open("prediction_accuracy.txt", "a") as f:
#LOGGER.debug("Exporting prediction accuracy and confidence")
f.write("Overall Detection Accuracy: {}\n".format(self.overall_detection_acc.value))
f.write("Cryptomining Attack Detection Accuracy: {}\n".format(self.cryptomining_attack_detection_acc.value))
f.write("Total Predictions: {}\n".format(self.total_predictions.value))
f.write("Total Positives: {}\n".format(len(self.attack_connections)))
f.write("False Positives: {}\n".format(self.false_positives.value))
f.write("True Negatives: {}\n".format(self.total_predictions.value - len(self.attack_connections)))
f.write("False Negatives: {}\n".format(self.false_negatives.value))
f.write("Cryptomining Detector Confidence: {}\n\n".format(self.confidence.value))
f.write("Timestamp: {}\n".format(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
f.close()
def generate_accuracy_scalability_csv(self):
LOGGER.debug("Starting async prediction accuracy analysis")
LOGGER.debug("Correct csv load: {}".format(os.path.exists("/var/teraflow/scalability_accuracy.csv")))
timestamp_start = datetime.now().strftime("%d/%m/%Y-%H:%M:%S")
# Wait for the system to stabilize
time.sleep(self.time_to_stabilize * 60)
np.save("y_true_max_conn_{}_time_to_stabilize_{}_exp2.npy".format(self.max_connection_time, self.time_to_stabilize), self.y_true)
np.save("y_pred_max_conn_{}_time_to_stabilize_{}_exp2.npy".format(self.max_connection_time, self.time_to_stabilize), self.y_pred)
LOGGER.debug("Scalability csv started for Exp 2\n")
with open("/var/teraflow/scalability_accuracy.csv", 'a', newline='') as f:
spamwriter = csv.writer(f, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL)
'''spamwriter.writerow(['TIME_CONS', 'OVERALL_ACCURACY', 'F1_SCORE_MACRO', 'F1_SCORE_WEIGHTED',
'BALANCED_ACCURACY', 'PRECISION_SCORE', 'RECALL_SCORE','OVERALL_ACCURACY'
'CRYPTO_ACCURACY', 'TOTAL_PREDICTIONS', 'TOTAL_POSITIVES', 'F_POSITIVES',
'T_NEGATIVES', 'F_NEGATIVES', 'CONFIDENCE', 'TIMESTAMP_START', 'TIMESTAMP_FINISH', 'TIME_TO_STABILIZE'])'''
spamwriter.writerow([self.max_connection_time, self.f1_score_macro.value, self.f1_score_weighted.value,
self.balanced_accuracy.value, self.precision_score.value, self.recall_score.value,
self.overall_detection_acc.value, self.cryptomining_attack_detection_acc.value,
self.total_predictions.value, self.attack_connections_len.value, self.false_positives.value,
self.total_predictions.value - self.attack_connections_len.value, self.false_negatives.value,
self.confidence.value, timestamp_start, datetime.now().strftime("%d/%m/%Y-%H:%M:%S"), self.time_to_stabilize])
f.close()
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def GetScalabilityConfig(self, request, context):
LOGGER.info("Received scalability config request for Exp 2")
self.max_connection_time = request.max_connection_time
self.time_to_stabilize = request.time_to_stabilize
# Start process to generate accuracy scalability csv asynchronically
p = Process(target=self.generate_accuracy_scalability_csv)
p.start()
return Empty(message="CSV generated")
def AnalyzeBatchConnectionStatistics(self, request, context):
batch_time_start = time.time()
for metric in request.metrics:
self.AnalyzeConnectionStatistics(metric, context)
batch_time_end = time.time()
with open("batch_time.txt", "a") as f:
f.write(str(len(request.metrics)) + "\n")
f.write(str(batch_time_end - batch_time_start) + "\n\n")
f.close()
#logging.debug("Metrics: " + str(len(request.metrics)))
#logging.debug("Batch time: " + str(batch_time_end - batch_time_start))
return Empty(message="OK, information received.")
"""
Send features allocated in the metadata of the onnx file to the DAD
-output: ONNX metadata as a list of integers
"""
@safe_and_metered_rpc_method(METRICS_POOL, LOGGER)
def GetFeaturesIds(self, request: Empty, context):
features = AutoFeatures()
for feature in self.cryptomining_detector_features_metadata:
features.auto_features.append(feature)
return features