Skip to content
Snippets Groups Projects
SliceGrouper.py 4.46 KiB
Newer Older
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
# Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging, pandas, threading
from typing import Dict, Optional, Tuple
Pablo Armingol's avatar
Pablo Armingol committed
from sklearn.cluster import KMeans
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
from common.proto.context_pb2 import Slice
from common.tools.grpc.Tools import grpc_message_to_json_string
from .Constants import SLICE_GROUPS
from .MetricsExporter import MetricsExporter
from .Tools import (
    add_slice_to_group, create_slice_groups, get_slice_grouping_parameters, is_slice_grouping_enabled,
    remove_slice_from_group)

LOGGER = logging.getLogger(__name__)

class SliceGrouper:
    def __init__(self) -> None:
Pablo Armingol's avatar
Pablo Armingol committed
        self._lock = threading.Lock()
        self._is_enabled = is_slice_grouping_enabled()
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
        LOGGER.info('Slice Grouping: {:s}'.format('ENABLED' if self._is_enabled else 'DISABLED'))
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
        if not self._is_enabled: return

Pablo Armingol's avatar
Pablo Armingol committed
        metrics_exporter = MetricsExporter()
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
        metrics_exporter.create_table()

Pablo Armingol's avatar
Pablo Armingol committed
        self._slice_groups = create_slice_groups(SLICE_GROUPS)
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed

        # Initialize and fit K-Means with the pre-defined clusters we want, i.e., one per slice group
Pablo Armingol's avatar
Pablo Armingol committed
        df_groups = pandas.DataFrame(SLICE_GROUPS, columns=['name', 'availability', 'capacity_gbps'])
        k_means = KMeans(n_clusters=df_groups.shape[0])
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
        k_means.fit(df_groups[['availability', 'capacity_gbps']])
        df_groups['label'] = k_means.predict(df_groups[['availability', 'capacity_gbps']])
        self._k_means = k_means
        self._df_groups = df_groups

Pablo Armingol's avatar
Pablo Armingol committed
        self._group_mapping : Dict[str, Dict] = {
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
            group['name']:{k:v for k,v in group.items() if k != 'name'}
Pablo Armingol's avatar
Pablo Armingol committed
            for group in list(df_groups.to_dict('records'))
            }
Pablo Armingol's avatar
Pablo Armingol committed
        label_to_group = {}
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
        for group_name,group_attrs in self._group_mapping.items():
            label = group_attrs['label']
            availability = group_attrs['availability']
            capacity_gbps = group_attrs['capacity_gbps']
            metrics_exporter.export_point(
                group_name, group_name, availability, capacity_gbps, is_center=True)
            label_to_group[label] = group_name
        self._label_to_group = label_to_group

Pablo Armingol's avatar
Pablo Armingol committed
    def _select_group(self, slice_obj : Slice) -> Optional[Tuple[str, float, float]]:
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
        with self._lock:
            grouping_parameters = get_slice_grouping_parameters(slice_obj)
            LOGGER.debug('[_select_group] grouping_parameters={:s}'.format(str(grouping_parameters)))
            if grouping_parameters is None: return None

            sample = pandas.DataFrame([grouping_parameters], columns=['availability', 'capacity_gbps'])
            sample['label'] = self._k_means.predict(sample)
            sample = sample.to_dict('records')[0]   # pylint: disable=unsubscriptable-object
            LOGGER.debug('[_select_group] sample={:s}'.format(str(sample)))
            label = sample['label']
            availability = sample['availability']
            capacity_gbps = sample['capacity_gbps']
            group_name = self._label_to_group[label]
            LOGGER.debug('[_select_group] group_name={:s}'.format(str(group_name)))
            return group_name, availability, capacity_gbps

    @property
Pablo Armingol's avatar
Pablo Armingol committed
    def is_enabled(self): return self._is_enabled
    
    def group(self, slice_obj : Slice) -> bool:
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
        LOGGER.debug('[group] slice_obj={:s}'.format(grpc_message_to_json_string(slice_obj)))
        selected_group = self._select_group(slice_obj)
        LOGGER.debug('[group] selected_group={:s}'.format(str(selected_group)))
        if selected_group is None: return False
        return add_slice_to_group(slice_obj, selected_group)

Pablo Armingol's avatar
Pablo Armingol committed
    def ungroup(self, slice_obj : Slice) -> bool:
Lluis Gifre Renom's avatar
Lluis Gifre Renom committed
        LOGGER.debug('[ungroup] slice_obj={:s}'.format(grpc_message_to_json_string(slice_obj)))
        selected_group = self._select_group(slice_obj)
        LOGGER.debug('[ungroup] selected_group={:s}'.format(str(selected_group)))
        if selected_group is None: return False
        return remove_slice_from_group(slice_obj, selected_group)