Skip to content
Snippets Groups Projects
pathComp_ksp.c 22.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	# Copyright 2022 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA) www.cttc.es
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.

 * Author: CTTC/CERCA PONS RU Ricardo Martínez (ricardo.martinez@cttc.es)
 */
 ////////////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h> 
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <glib.h>
#include <sys/time.h>
#include <ctype.h>
#include <strings.h>
#include <time.h>
#include <math.h>
#include <fcntl.h>

#include "pathComp_log.h"
#include "pathComp_tools.h"
#include "pathComp_ksp.h"

// Global Variables
struct map_nodes_t *mapNodes = NULL;
struct graph_t *graph = NULL;
struct contextSet_t* contextSet = NULL;
//struct linkList_t* linkList;
//struct deviceList_t* deviceList;
//struct serviceList_t* serviceList;

gint numPathCompIntents = 0;  // number of events triggering the path computation
gint numSuccesPathComp = 0; // number of events resulting in succesfully path computations fulfilling the constraints
struct timeval total_path_comp_time;
gdouble totalReqBw = 0.0;
gdouble totalServedBw = 0.0;

///////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_ksp.c
 * 	@brief update statistics of the KSP path computation
 *
 *  @param routeConnList
 *	@param d
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2021
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void update_stats_ksp_path_comp(struct compRouteOutputList_t* routeConnList, struct timeval d)
{
	g_assert(routeConnList);
	g_assert(serviceList);
	
	total_path_comp_time.tv_sec = total_path_comp_time.tv_sec + d.tv_sec;
	total_path_comp_time.tv_usec = total_path_comp_time.tv_usec + d.tv_usec;
	total_path_comp_time = tv_adjust(total_path_comp_time);

	gdouble path_comp_time_msec = (((total_path_comp_time.tv_sec) * 1000) + ((total_path_comp_time.tv_usec) / 1000));
	gdouble av_alg_comp_time = ((path_comp_time_msec / numSuccesPathComp));
	DEBUG_PC("\t --- STATS KSP PATH COMP ----");
	DEBUG_PC("Succesfully Comp: %d | Path Comp Requests: %d", numSuccesPathComp, numPathCompIntents);
	DEBUG_PC("AV. PATH COMP ALG. TIME: %f ms", av_alg_comp_time);

	for (gint i = 0; i < serviceList->numServiceList; i++) {
		struct service_t* s = &(serviceList->services[i]);
		char* eptr;
		for (gint j = 0; j < s->num_service_constraints; j++) {
			struct constraint_t* constraints = &(s->constraints[j]);
			if (strncmp((const char*)(constraints->constraint_type), "bandwidth", 9) == 0) {
				totalReqBw += (gdouble)(strtod((char*)constraints->constraint_value, &eptr));
			}
		}
	}
	for (gint k = 0; k < routeConnList->numCompRouteConnList; k++) {
		struct compRouteOutput_t* rO = &(routeConnList->compRouteConnection[k]);
		if (rO->noPathIssue == NO_PATH_CONS_ISSUE) {
			continue;
		}
		// Get the requested service bw bound to that computed path
		struct path_t* p = &(rO->paths[0]);
		struct service_t* s = get_service_for_computed_path(rO->serviceId.service_uuid);
		if (s == NULL) {
			DEBUG_PC("Weird the service associated to a path is not found");
			exit(-1);
		}
		for (gint l = 0; l < s->num_service_constraints; l++) {
			struct constraint_t* constraints = &(s->constraints[l]);
			char* eptr;
			if (strncmp((const char*)(constraints->constraint_type), "bandwidth", 9) == 0) {
				totalServedBw += (gdouble)(strtod((char*)constraints->constraint_value, &eptr));
			}
		}
	}
	gdouble avServedRatio = totalServedBw / totalReqBw;
	DEBUG_PC("AV. Served Ratio: %f", avServedRatio);
	gdouble avBlockedBwRatio = (gdouble)(1.0 - avServedRatio);
	DEBUG_PC("AV. BBE: %f", avBlockedBwRatio);
	return;
}

///////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_ksp.c
 * 	@brief Dijkstra algorithm
 *
 *  @param srcMapIndex
 *  @param dstMapIndex
 *	@param g
 *	@param s
 *	@param SN
 *	@param RP
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void sp_comp(gint srcMapIndex, gint dstMapIndex, struct graph_t* g, struct service_t* s,
	struct nodes_t* SN, struct compRouteOutputItem_t* RP) {
	g_assert(s);
	g_assert(g);

	// Set params into mapNodes related to the source nodes of the request
	mapNodes->map[srcMapIndex].distance = 0.0;
	mapNodes->map[srcMapIndex].latency = 0.0;
	mapNodes->map[srcMapIndex].avaiBandwidth = 0.0;

	// Initialize the set Q and S
	GList* S = NULL, * Q = NULL;
	gint indexVertice = -1;

	//  Add the source into the Q
	struct nodeItem_t* nodeItem = g_malloc0(sizeof(struct nodeItem_t));
	if (nodeItem == NULL) {
		DEBUG_PC("memory allocation failed\n");
		exit(-1);
	}
	// initialize some nodeItem attributes
	nodeItem->distance = 0.0;
	nodeItem->latency = 0.0;
	duplicate_node_id(&mapNodes->map[srcMapIndex].verticeId, &nodeItem->node);
	Q = g_list_insert_sorted(Q, nodeItem, sort_by_distance);

	// Check whether there is spurNode (SN) and rootPath (RP)
	if (SN != NULL && RP != NULL) {
		struct routeElement_t* re;
		for (gint j = 0; j < RP->numRouteElements; j++)
		{
			// Get the source and target Nodes of the routeElement within the rootPath
			re = &RP->routeElement[j];
			DEBUG_PC ("root Link: aNodeId: %s (%s) --> zNodeiId: %s (%s)", re->aNodeId.nodeId, re->aEndPointId, re->zNodeId.nodeId, re->zEndPointId);

			// if ingress of the root link (aNodeId) is the spurNode, then stops
			if (compare_node_id(&re->aNodeId, SN) == 0)
			{
				DEBUG_PC ("root Link: aNodeId: %s and spurNode: %s -- stop exploring the rootPath (RP)", re->aNodeId.nodeId, SN->nodeId);
				break;
			}
			// Extract from Q
			GList* listnode = g_list_first(Q);
			struct nodeItem_t* node = (struct nodeItem_t*)(listnode->data);
			Q = g_list_remove(Q, node);

			//DEBUG_RL_RA ("Exploring node %s", node->node.nodeId);
			indexVertice = graph_vertice_lookup(node->node.nodeId, g);
			g_assert(indexVertice >= 0);

			// Get the indexTargetedVertice
			gint indexTVertice = -1;
			indexTVertice = graph_targeted_vertice_lookup(indexVertice, re->zNodeId.nodeId, g);
			gint done = check_link(node, indexVertice, indexTVertice, g, s, &S, &Q, mapNodes);
			(void)done;

			// Add to the S list
			S = g_list_append(S, node);    
		}

		// Check that the first node in Q set is SpurNode, otherwise something went wrong ...
		if (compare_node_id(&re->aNodeId, SN) != 0) {
			//DEBUG_PC ("root Link: aNodeId: %s is NOT the spurNode: %s -- something wrong", re->aNodeId.nodeId, SN->nodeId);
			g_list_free_full(S, g_free);
			g_list_free_full(Q, g_free);
			return;
		}
	}		
	while (g_list_length(Q) > 0) {
		//Extract from Q set
		GList* listnode = g_list_first(Q);
		struct nodeItem_t* node = (struct nodeItem_t*)(listnode->data);
		Q = g_list_remove(Q, node);
		DEBUG_PC ("Q length: %d", g_list_length (Q)); 
		DEBUG_PC ("DeviceId: %s", node->node.nodeId);            

		// visit all the links from u within the graph
		indexVertice = graph_vertice_lookup(node->node.nodeId, g);
		g_assert(indexVertice >= 0);

		// Check the targeted vertices from u
		for (gint i = 0; i < g->vertices[indexVertice].numTargetedVertices; i++)  {                
			gint done = check_link(node, indexVertice, i, g, s, &S, &Q, mapNodes);
			(void)done;
		}
		// Add node into the S Set
		S = g_list_append(S, node);
		//DEBUG_PC ("S length: %d", g_list_length (S));              
	}
	g_list_free_full(S, g_free);
	g_list_free_full(Q, g_free);
	return;
}

///////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_ksp.c
 * 	@brief KSP computation using Dijkstra algorithm
 *
 *  @param pred
 *  @param g
 *	@param s
  *	@param SN
 *	@param RP
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
gint ksp_comp(struct pred_t* pred, struct graph_t* g, struct service_t* s, 
				struct nodes_t *SN, struct compRouteOutputItem_t *RP) {
	g_assert(pred);
	g_assert(g);
	g_assert(s);

	// Check the both ingress src and dst endpoints are in the graph
	gint srcMapIndex = get_map_index_by_nodeId(s->service_endpoints_id[0].device_uuid, mapNodes);
	if (srcMapIndex == -1) {
		DEBUG_PC("ingress DeviceId: %s NOT in the graph", s->service_endpoints_id[0].device_uuid);
		return -1;
	}

	gint dstMapIndex = get_map_index_by_nodeId(s->service_endpoints_id[1].device_uuid, mapNodes);
	if (dstMapIndex == -1) {
		DEBUG_PC("egress DeviceId: %s NOT in the graph", s->service_endpoints_id[1].device_uuid);
		return -1;
	}

	// Compute the shortes path route
	sp_comp(srcMapIndex, dstMapIndex, g, s, SN, RP);
		
	// Check that a feasible solution in term of latency and bandwidth is found
	gint map_dstIndex = get_map_index_by_nodeId(s->service_endpoints_id[1].device_uuid, mapNodes);
	struct map_t* dest_map = &mapNodes->map[map_dstIndex];
	if (!(dest_map->distance < INFINITY_COST)) 	{
		DEBUG_PC("destination: %s NOT reachable", s->service_endpoints_id[1].device_uuid);
		return -1;
	}

	DEBUG_PC("AvailBw @ %s is %f", dest_map->verticeId.nodeId, dest_map->avaiBandwidth);
	// Check that the computed available bandwidth is larger than 0.0
	if (dest_map->avaiBandwidth <= (gfloat)0.0) {
		DEBUG_PC("dst: %s NOT REACHABLE", s->service_endpoints_id[1].device_uuid);
		return -1;
	}
	DEBUG_PC("dst: %s REACHABLE", s->service_endpoints_id[1].device_uuid);
	// Handle predecessors
	build_predecessors(pred, s, mapNodes);
	return 1;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_ksp.c
 * 	@brief K-CSPF algorithm execution (YEN algorithm)
 *
 *  @param s
 *  @param path
 *  @param g
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void alg_comp(struct service_t* s, struct compRouteOutput_t* path, struct graph_t *g) {
	g_assert(s);
	g_assert(path);
	g_assert(g);

	// create map of devices/nodes to handle the path computation using the context
	mapNodes = create_map_node();
	build_map_node(mapNodes, g);

	// predecessors to store the computed path    
	struct pred_t* predecessors = create_predecessors();

	struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[0]);
	struct service_endpoints_id_t* eEp = &(s->service_endpoints_id[1]);

	// Compute the 1st KSP path
	gint done = ksp_comp (predecessors, g, s, NULL, NULL);
	if (done == -1) {
		DEBUG_PC("NO PATH FOUND %s[%s] ---> %s[%s]", iEp->device_uuid, iEp->endpoint_uuid, eEp->device_uuid, eEp->endpoint_uuid);
		comp_route_connection_issue_handler(path, s);
		g_free(mapNodes); g_free(predecessors);
	}

	// Construct the path from the computed predecessors
	struct compRouteOutputItem_t* p = create_path_item();
	//print_predecessors(predecessors);
	build_path(p, predecessors, s);
	//DEBUG_PC ("Path is constructed");

	gint indexDest = get_map_index_by_nodeId(eEp->device_uuid, mapNodes);
	struct map_t* dst_map = &mapNodes->map[indexDest];
	// Get the delay and cost
	memcpy(&p->cost, &dst_map->distance, sizeof(gdouble));
	memcpy(&p->availCap, &dst_map->avaiBandwidth, sizeof(dst_map->avaiBandwidth));
	memcpy(&p->delay, &dst_map->latency, sizeof(mapNodes->map[indexDest].latency));
	DEBUG_PC ("Computed Path Avail Bw: %f, Path Cost: %f, latency: %f", p->availCap, p->cost, p->delay);

	// If 1st SP satisfies the requirements from the req, STOP
	gboolean feasibleRoute = check_computed_path_feasability(s, p);
	if (feasibleRoute == TRUE) 	{
		DEBUG_PC("1st K-CSPF FEASIBLE, STOP!");
		print_path (p);		
		path->numPaths++;

		// Copy the serviceId
		copy_service_id(&path->serviceId, &s->serviceId);

		// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
		for (gint i = 0; i < s->num_service_endpoints_id; i++) {
			struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[i]);
			struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[i]);
			copy_service_endpoint_id(oEp, iEp);
		}
		path->num_service_endpoints_id = s->num_service_endpoints_id;

		// Copy the computed path
		struct path_t* targetedPath = &(path->paths[path->numPaths - 1]);
		duplicate_path_t(p, targetedPath);		
		print_path_t (targetedPath);
		g_free(predecessors);
		g_free(p);
		g_free(mapNodes);
		return;
	}

	DEBUG_PC("1st CSPF COMPUTATION IS NOT FEASIBLE --> TRIGGER K COMPUTATIONS");
	// Create A and B sets of paths to handle the YEN algorithm
	struct path_set_t* A = create_path_set();
	struct path_set_t* B = create_path_set();

	// Add the previously computed path into A->paths[0]	
	duplicate_path(p, &A->paths[0]);

	A->numPaths++;
	g_free(predecessors);
	g_free(p);
	for (gint k = 1; k < MAX_KSP_VALUE; k++) {
		DEBUG_PC("------------ kth (%d) ---------------------", k);
		struct compRouteOutputItem_t* p = create_path_item();
		duplicate_path(&A->paths[k - 1], p);
		// The spurNode ranges from near-end node of the first link to the near-end of the last link forming the kth path
		gint i = 0;
		struct compRouteOutputItem_t* rootPath = create_path_item();
		for (i = 0; i < p->numRouteElements; i++) {
			struct nodes_t* spurNode = create_node();
			struct nodes_t* nextSpurNode = create_node();
			struct routeElement_t* re = &(p->routeElement[i]);
			// Create predecessors to store the computed path
			struct pred_t* predecessors = create_predecessors();
			// Clear previous mapNodes, i.e. create it again
			g_free(mapNodes);
			mapNodes = create_map_node();
			build_map_node(mapNodes, g);
			struct nodes_t* n = &re->aNodeId;
			duplicate_node_id(n, spurNode);
			n = &re->zNodeId;
			duplicate_node_id(n, nextSpurNode);
			DEBUG_PC("spurNode: %s --> nextSpurNode: %s", spurNode->nodeId, nextSpurNode->nodeId);

			// rootPath contains a set of links of A[k-1] from the source Node till the SpurNode -> NextSpurNode
			// Example: A[k-1] = {L1, L2, L3, L4}, i.e. " Node_a -- L1 --> Node_b -- L2 --> Node_c -- L3 --> Node_d -- L4 --> Node_e "
			// E.g., for the ith iteration if the spurNode = Node_c and NextSpurNode = Node_d; then rootPath = {L1, L2, L3}			
			add_routeElement_path_back(re, rootPath);
			DEBUG_PC("rootPath:");
			print_path(rootPath);

			// For all existing and computed paths p in A check if from the source to the NextSpurNode
			// the set of links matches with those contained in the rootPath
			// If YES, remove from the auxiliary graph the next link in p from NextSpurNode
			// Otherwise do nothing 
			struct graph_t* gAux = create_graph();
			// Baseline graph 
			//build_graph (gAux);
			duplicate_graph(g, gAux);
			// Modified graph
			modify_targeted_graph(gAux, A, rootPath, spurNode);

			// Trigger the computation of the path from src to dst constrained to traverse all the links from src 
			// to spurNode contained into rootPath over the resulting graph			
			if (ksp_comp(predecessors, gAux, s, spurNode, rootPath) == -1) {
				DEBUG_PC("FAILED SP from %s via spurNode: %s to %s", iEp->device_uuid, spurNode->nodeId, eEp->device_uuid);
				g_free(nextSpurNode);
				g_free(spurNode);
				g_free(gAux);
				g_free(predecessors);
				continue;
			}
			DEBUG_PC("SUCCESFUL SP from %s via spurNode: %s to %s", iEp->device_uuid, spurNode->nodeId, eEp->device_uuid);
			// Create the node list from the predecessors
			struct compRouteOutputItem_t* newKpath = create_path_item();
			build_path(newKpath, predecessors, s);
			DEBUG_PC("new K (for k: %d) Path is built", k);
			gint indexDest = get_map_index_by_nodeId(eEp->device_uuid, mapNodes);
			struct map_t* dst_map = &mapNodes->map[indexDest];

			memcpy(&newKpath->cost, &dst_map->distance, sizeof(gdouble));
			memcpy(&newKpath->availCap, &dst_map->avaiBandwidth, sizeof(dst_map->avaiBandwidth));
			memcpy(&newKpath->delay, &dst_map->latency, sizeof(mapNodes->map[indexDest].latency));			
			DEBUG_PC("New PATH (@ kth: %d) ADDED to B[%d] - {Path Cost: %f, e2e latency: %f, bw: %f ", k, B->numPaths, newKpath->cost, newKpath->delay, newKpath->availCap);
			// Add the computed kth SP to the heap B
			duplicate_path(newKpath, &B->paths[B->numPaths]);
			B->numPaths++;
			DEBUG_PC("Number of B paths: %d", B->numPaths);

			g_free(newKpath);
			g_free(nextSpurNode);
			g_free(spurNode);
			g_free(gAux);
			g_free(predecessors);
		}

		// If B is empty then stops
		if (B->numPaths == 0) {
			DEBUG_PC("B does not have any path ... the stops kth computation");
			break;
		}

		// Sort the potential paths contained in B by cost and latency and available bandwidth
		sort_path_set(B);

		// Add the lowest path into A[k]		
		DEBUG_PC("-------------------------------------------------------------");
		DEBUG_PC("To Add SP from B[0] to A[%d] --- Path Cost: %f, e2e Latency: %f", A->numPaths, B->paths[0].cost, B->paths[0].delay);
		duplicate_path(&B->paths[0], &A->paths[A->numPaths]);
		A->numPaths++;
		DEBUG_PC("A Set size: %d", A->numPaths);
		DEBUG_PC("-------------------------------------------------------------");

		// Remove/pòp front element from the path set B (i.e. remove B[0])
		pop_front_path_set(B);
		DEBUG_PC("B Set Size: %d", B->numPaths);
	}

	// Copy the serviceId
	copy_service_id(&path->serviceId, &s->serviceId);
	// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
	for (gint m = 0; m < s->num_service_endpoints_id; m++) {
		struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[m]);
		struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[m]);
		copy_service_endpoint_id(oEp, iEp);
	}

	for (gint ksp = 1; ksp < A->numPaths; ksp++){
		if (ksp >= MAX_KSP_VALUE) {
			DEBUG_PC("Number Requested paths (%d) REACHED - STOP", ksp);
			break;
		}
		gdouble feasibleRoute = check_computed_path_feasability(s, &A->paths[ksp]);
		if (feasibleRoute == TRUE) {
			DEBUG_PC("A[k-th%d] available: %f, pathCost: %f; latency: %f", ksp, A->paths[ksp].availCap, A->paths[ksp].cost, A->paths[ksp].delay);
			struct compRouteOutputItem_t* pathaux = &A->paths[ksp];
			path->numPaths++;
			struct path_t* targetedPath = &path->paths[path->numPaths - 1];
			duplicate_path_t(pathaux, targetedPath);		
			print_path_t(targetedPath);
			remove_path_set(A);
			remove_path_set(B);
			return;
		}
	}
	remove_path_set(A);
	remove_path_set(B);
	// No paths found --> Issue	
	DEBUG_PC("K-SP failed!!!");
	comp_route_connection_issue_handler(path, s);

	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_ksp.c
 * 	@brief Iterates over the list of network connectivity service requests 
 * to compute their own paths fulfilling the constraints
 *
 *  @param outputList
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void ksp_alg_execution_services(struct compRouteOutputList_t* outputList) {
	g_assert(outputList);
	g_assert(contextSet);
	g_assert(serviceList);

	DEBUG_PC("----- Starting the KSP Computation ------");

	// Iterate over the list of requested network connectivity services
	for (gint i = 0; i < serviceList->numServiceList; i++) {
		struct service_t* service = &(serviceList->services[i]);

		DEBUG_PC("Starting the Computation for ServiceId: %s [ContextId: %s]", service->serviceId.service_uuid, service->serviceId.contextId);
		struct compRouteOutput_t* pathService = &(outputList->compRouteConnection[i]);
		// check endpoints of the service are different (PE devices/nodes are different)
		if (same_src_dst_pe_nodeid(service) == 0) {
			DEBUG_PC("PEs are the same... no path computation");
			comp_route_connection_issue_handler(pathService, service);
			outputList->numCompRouteConnList++;
			continue;
		}
		// get the graph associated to the contextId in the contextSet, if no then error
		struct graph_t* g = get_graph_by_contextId(contextSet, service->serviceId.contextId);
		if (g == NULL) {
			DEBUG_PC("The targeted contextId is NOT in the ContextSet ... then NO graph");
			comp_route_connection_issue_handler(pathService, service);
			outputList->numCompRouteConnList++;
			continue;
		}
		alg_comp(service, pathService, g);
		outputList->numCompRouteConnList++;

		// for each network connectivity service, a single computed path (out of the KCSP) is retuned
		// If path is found, then the selected resources must be pre-assigned into the context information
		if (pathService->noPathIssue == NO_PATH_CONS_ISSUE)
		{
			continue;
		}
		struct path_t* path = &(pathService->paths[pathService->numPaths - 1]);
		allocate_graph_resources(path, service, g);
		allocate_graph_reverse_resources(path, service, g);
		print_graph(g);
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_ksp.c
 * 	@brief handles the path computation triggering k-cspf algorithm
 *
 *  @param compRouteOutput
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint pathComp_ksp_alg(struct compRouteOutputList_t * routeConnList)
{   	
	g_assert(routeConnList);
	
	DEBUG_PC ("================================================================");
	DEBUG_PC ("===========================   KSP   =========================");
	DEBUG_PC ("================================================================");
	// increase the number of Path Comp. Intents
	numPathCompIntents++;
	gint http_code = HTTP_CODE_OK;

	// timestamp t0
	struct timeval t0;
	gettimeofday(&t0, NULL);	
	
	// Allocate memory for the context
	contextSet = create_contextSet();
	// Build up the contextSet (>= 1)
	build_contextSet(contextSet);
	print_contextSet(contextSet);	
#if 1	
	//Triggering the path computation for each specific network connectivity service
	ksp_alg_execution_services (routeConnList);

	// -- timestamp t1
	struct timeval t1, delta;
	gettimeofday(&t1, NULL);
	delta.tv_sec = t1.tv_sec - t0.tv_sec;
	delta.tv_usec = t1.tv_usec - t0.tv_usec;
	delta = tv_adjust(delta);

	numSuccesPathComp++;
	update_stats_ksp_path_comp(routeConnList, delta);
	print_path_connection_list(routeConnList);
#endif

	g_free(contextSet);
	return http_code;
}