Newer
Older
/*
* Copyright (c) 2019 InterDigital Communications, Inc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use algo file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package netchar
import (
"errors"
"fmt"
"strconv"
"strings"
"time"
Kevin Di Lallo
committed
dkm "github.com/InterDigitalInc/AdvantEDGE/go-packages/meep-data-key-mgr"
dataModel "github.com/InterDigitalInc/AdvantEDGE/go-packages/meep-data-model"
log "github.com/InterDigitalInc/AdvantEDGE/go-packages/meep-logger"
mod "github.com/InterDigitalInc/AdvantEDGE/go-packages/meep-model"
redis "github.com/InterDigitalInc/AdvantEDGE/go-packages/meep-redis"
)
const MAX_THROUGHPUT = 9999999999
const THROUGHPUT_UNIT = 1000000 //convert from Mbps to bps
const DEFAULT_THROUGHPUT_LINK = 1000.0
const metricsDb = 0
Kevin Di Lallo
committed
const metricsKey string = "metrics:"
// SegAlgoConfig - Segment Algorithm Config
type SegAlgoConfig struct {
// Segment config
MaxBwPerInactiveFlow float64
MaxBwPerInactiveFlowFloor float64
MinActivityThreshold float64
IncrementalStep float64
InactivityIncrementalStep float64
TolerationThreshold float64
ActionUpperThreshold float64
// Debug Config
IsPercentage bool
LogVerbose bool
}
// SegAlgoSegment -
type SegAlgoSegment struct {
Name string
ConfiguredNetChar NetChar
MaxFairShareBwPerFlow float64
CurrentThroughput float64
MaxBwPerInactiveFlow float64
MinActivityThreshold float64
IncrementalStep float64
InactivityIncrementalStep float64
TolerationThreshold float64
ActionUpperThreshold float64
Flows []*SegAlgoFlow
}
// SegAlgoFlow -
type SegAlgoFlow struct {
Name string
SrcNetElem string
DstNetElem string
ConfiguredNetChar NetChar
AppliedNetChar NetChar
ComputedLatency float64
ComputedJitter float64
ComputedPacketLoss float64
AllocatedThroughput float64 //allocated
AllocatedThroughputLowerBound float64 //allocated
AllocatedThroughputUpperBound float64 //allocated
MaxPlannedThroughput float64
MaxPlannedLowerBound float64
MaxPlannedUpperBound float64
PlannedThroughput float64
PlannedLowerBound float64
PlannedUpperBound float64
CurrentThroughput float64 //measured
CurrentThroughputEgress float64 //measured
Path *SegAlgoPath
}
// SegAlgoPath -
type SegAlgoPath struct {
Kevin Di Lallo
committed
Name string
Segments []*SegAlgoSegment
Disconnected bool
}
// SegAlgoNetElem -
type SegAlgoNetElem struct {
Name string
Type string
PhyLocName string
PoaName string
ZoneName string
DomainName string
}
// SegmentAlgorithm -
type SegmentAlgorithm struct {
Name string
Namespace string
BaseKey string
FlowMap map[string]*SegAlgoFlow
SegmentMap map[string]*SegAlgoSegment
ConnectivityModel string
Config SegAlgoConfig
rc *redis.Connector
}
// NewSegmentAlgorithm - Create, Initialize and connect
Kevin Di Lallo
committed
func NewSegmentAlgorithm(name string, namespace string, redisAddr string) (*SegmentAlgorithm, error) {
// Create new instance & set default config
var err error
var algo SegmentAlgorithm
Kevin Di Lallo
committed
algo.Namespace = namespace
algo.BaseKey = dkm.GetKeyRoot(namespace) + metricsKey
algo.FlowMap = make(map[string]*SegAlgoFlow)
algo.SegmentMap = make(map[string]*SegAlgoSegment)
algo.ConnectivityModel = mod.ConnectivityModelOpen
algo.Config.MaxBwPerInactiveFlow = 20.0
algo.Config.MaxBwPerInactiveFlowFloor = 6.0
algo.Config.MinActivityThreshold = 0.3
algo.Config.IncrementalStep = 3.0
algo.Config.InactivityIncrementalStep = 1.0
algo.Config.ActionUpperThreshold = 1.0
algo.Config.TolerationThreshold = 4.0
algo.Config.IsPercentage = true
// Create connection to Metrics Redis DB & flush entries
algo.rc, err = redis.NewConnector(redisAddr, metricsDb)
if err != nil {
log.Error("Failed connection to Metrics redis DB. Error: ", err)
return nil, err
}
Kevin Di Lallo
committed
_ = algo.rc.DBFlush(algo.BaseKey)
log.Info("Connected to Metrics redis DB")
return &algo, nil
}
// ProcessScenario -
func (algo *SegmentAlgorithm) ProcessScenario(model *mod.Model, pduSessions map[string]map[string]*dataModel.PduSessionInfo) error {
var netElemList []SegAlgoNetElem
// Process empty scenario
if model.GetScenarioName() == "" {
// Remove any existing metrics
algo.deleteMetricsEntries()
//reset the map
algo.FlowMap = make(map[string]*SegAlgoFlow)
}
// Get scenario connectivity model
algo.ConnectivityModel = model.GetConnectivityModel()
// Clear segment & flow maps
algo.SegmentMap = make(map[string]*SegAlgoSegment)
// Process active scenario
procNames := model.GetNodeNames("CLOUD-APP", "EDGE-APP", "UE-APP")
// Create NetElem for each scenario process
for _, name := range procNames {
// Retrieve node & context from model
node := model.GetNode(name)
if node == nil {
err := errors.New("Error finding process: " + name)
return err
}
proc, ok := node.(*dataModel.Process)
if !ok {
err := errors.New("Error casting process: " + name)
return err
}
ctx := model.GetNodeContext(name)
if ctx == nil {
err := errors.New("Error getting context for process: " + name)
return err
}
Kevin Di Lallo
committed
nodeCtx, ok := ctx.(*mod.NodeContext)
if !ok {
err := errors.New("Error casting context for process: " + name)
return err
}
// Create & populate new element
element := new(SegAlgoNetElem)
element.Name = proc.Name
Kevin Di Lallo
committed
element.PhyLocName = nodeCtx.Parents[mod.PhyLoc]
element.DomainName = nodeCtx.Parents[mod.Domain]
// Type-specific values
element.Type = model.GetNodeType(element.PhyLocName)
if element.Type == "UE" || element.Type == "FOG" {
Kevin Di Lallo
committed
element.PoaName = nodeCtx.Parents[mod.NetLoc]
}
if element.Type != "DC" {
Kevin Di Lallo
committed
element.ZoneName = nodeCtx.Parents[mod.Zone]
}
deployment := model.GetNodeParent(element.DomainName).(*dataModel.Deployment)
// Set max App Net chars (use default if set to 0)
element.ConfiguredNetChar.Latency = float64(proc.NetChar.Latency)
element.ConfiguredNetChar.Jitter = float64(proc.NetChar.LatencyVariation)
element.ConfiguredNetChar.Distribution = deployment.NetChar.LatencyDistribution //set global value
element.ConfiguredNetChar.ThroughputDl = float64(proc.NetChar.ThroughputUl)
element.ConfiguredNetChar.ThroughputUl = float64(proc.NetChar.ThroughputUl)
element.ConfiguredNetChar.PacketLoss = float64(proc.NetChar.PacketLoss)
if element.ConfiguredNetChar.ThroughputUl == 0 {
element.ConfiguredNetChar.ThroughputUl = DEFAULT_THROUGHPUT_LINK
}
if element.ConfiguredNetChar.ThroughputDl == 0 {
element.ConfiguredNetChar.ThroughputDl = DEFAULT_THROUGHPUT_LINK
}
// Add element to list
netElemList = append(netElemList, *element)
}
// Create all flows using Network Element list
for _, elemSrc := range netElemList {
for _, elemDest := range netElemList {
if elemSrc.Name != elemDest.Name {
// Create flow
algo.populateFlow(elemSrc.Name+":"+elemDest.Name, &elemSrc, &elemDest, 0, model, pduSessions)
// Create DB entry to begin collecting metrics for this flow
algo.createMetricsEntry(elemSrc.Name, elemDest.Name)
}
}
}
// Log segments & flows in Verbose mode
if algo.Config.LogVerbose {
log.Info("Segments map: ", algo.SegmentMap)
log.Info("Flows map: ", algo.FlowMap)
}
return nil
}
// CalculateNetChar - Run algorithm to recalculate network characteristics using latest scenario & metrics
func (algo *SegmentAlgorithm) CalculateNetChar() []FlowNetChar {
var updatedNetCharList []FlowNetChar
currentTime := time.Now()
algo.logTimeLapse(¤tTime, "time to print")
// Update flow with latest metrics
Kevin Di Lallo
committed
keyName := algo.BaseKey + "*:throughput"
err := algo.rc.ForEachEntry(keyName, algo.getMetricsThroughputEntryHandler, nil)
if err != nil {
log.Error("Failed to get entries: ", err)
return updatedNetCharList
}
algo.logTimeLapse(¤tTime, "time to update metrics")
// Recalculate segment BW allocation for each flow
algo.reCalculateNetChar()
algo.logTimeLapse(¤tTime, "time to recalculate throughput")
// Prepare list of updated flows
for _, flow := range algo.FlowMap {
updateNeeded := false
if flow.MaxPlannedThroughput != flow.AllocatedThroughput && flow.MaxPlannedThroughput != MAX_THROUGHPUT {
if algo.Config.LogVerbose {
log.Info("Update allocated bandwidth for ", flow.Name, " to ", flow.MaxPlannedThroughput, " from ", flow.AllocatedThroughput)
}
if flow.MaxPlannedThroughput >= 0 {
flow.AllocatedThroughput = flow.MaxPlannedThroughput
flow.AllocatedThroughputLowerBound = flow.MaxPlannedLowerBound
flow.AllocatedThroughputUpperBound = flow.MaxPlannedUpperBound
flow.AppliedNetChar.Throughput = flow.AllocatedThroughput
updateNeeded = true
if flow.MaxPlannedThroughput == 0 {
log.Error("Impossible 0 result: ", printFlow(flow))
}
} else {
log.Error("Impossible negative result: ", printFlow(flow))
}
}
if (flow.ComputedLatency != flow.AppliedNetChar.Latency) ||
(flow.ComputedJitter != flow.AppliedNetChar.Jitter) ||
(flow.ComputedPacketLoss != flow.AppliedNetChar.PacketLoss) ||
(flow.ConfiguredNetChar.Distribution != flow.AppliedNetChar.Distribution) {
log.Info("Update other netchars for ", flow.Name, " to ", flow.ComputedLatency, "-", flow.ComputedJitter, "-", flow.ComputedPacketLoss, " from ", flow.AppliedNetChar.Latency, "-", flow.AppliedNetChar.Jitter, "-", flow.AppliedNetChar.PacketLoss, "-", flow.AppliedNetChar.Distribution)
flow.AppliedNetChar.Latency = flow.ComputedLatency
flow.AppliedNetChar.Jitter = flow.ComputedJitter
flow.AppliedNetChar.PacketLoss = flow.ComputedPacketLoss
flow.AppliedNetChar.Distribution = flow.ConfiguredNetChar.Distribution
netchar := NetChar{flow.AppliedNetChar.Latency, flow.AppliedNetChar.Jitter, flow.AppliedNetChar.PacketLoss, flow.AppliedNetChar.Throughput, flow.ConfiguredNetChar.Distribution}
flowNetChar := FlowNetChar{flow.SrcNetElem, flow.DstNetElem, netchar}
updatedNetCharList = append(updatedNetCharList, flowNetChar)
}
}
return updatedNetCharList
}
// SetConfigAttribute
func (algo *SegmentAlgorithm) SetConfigAttribute(fieldName string, fieldValue string) {
switch fieldName {
case "maxBwPerInactiveFlow":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.MaxBwPerInactiveFlow = value
}
case "maxBwPerInactiveFlowFloor":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.MaxBwPerInactiveFlowFloor = value
}
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
case "minActivityThreshold":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.MinActivityThreshold = value
}
case "incrementalStep":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.IncrementalStep = value
}
case "inactivityIncrementalStep":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.InactivityIncrementalStep = value
}
case "tolerationThreshold":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.TolerationThreshold = value
}
case "actionUpperThreshold":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.ActionUpperThreshold = value
}
case "isPercentage":
if "yes" == fieldValue {
algo.Config.IsPercentage = true
} else {
algo.Config.IsPercentage = false
}
case "logVerbose":
if "yes" == fieldValue {
algo.Config.LogVerbose = true
}
default:
}
}
// logTimeLapse -
func (algo *SegmentAlgorithm) logTimeLapse(currentTime *time.Time, message string) {
if algo.Config.LogVerbose {
elapsed := time.Since(*currentTime)
log.WithFields(log.Fields{
"meep.log.component": algo.Name,
"meep.time.location": message,
"meep.time.exec": elapsed,
}).Info("Measurements log")
*currentTime = time.Now()
}
}
// createMetricsEntry -
func (algo *SegmentAlgorithm) createMetricsEntry(srcElem string, dstElem string) {
var creationTime = make(map[string]interface{})
creationTime["creationTime"] = time.Now()
// Entries are created with no values, sidecar will only fill them, otherwise, won't be cleared
Kevin Di Lallo
committed
_ = algo.rc.SetEntry(algo.BaseKey+dstElem+":throughput", creationTime)
}
// deleteMetricsEntries -
func (algo *SegmentAlgorithm) deleteMetricsEntries() {
for _, flow := range algo.FlowMap {
// Entries are created with no values, sidecar will only fill them, otherwise, won't be cleared
Kevin Di Lallo
committed
_ = algo.rc.DelEntry(algo.BaseKey + flow.DstNetElem + ":throughput")
}
}
// populateFlow - Create/Update flow
func (algo *SegmentAlgorithm) populateFlow(flowName string, srcElement *SegAlgoNetElem, destElement *SegAlgoNetElem, maxBw float64,
model *mod.Model, pduSessions map[string]map[string]*dataModel.PduSessionInfo) {
// Use existing flow if present or Create new flow
flow := algo.FlowMap[flowName]
if flow == nil {
flow = new(SegAlgoFlow)
flow.Name = flowName
flow.SrcNetElem = srcElement.Name
flow.DstNetElem = destElement.Name
algo.FlowMap[flowName] = flow
} else if flow.Name != flowName || flow.SrcNetElem != srcElement.Name && flow.DstNetElem != destElement.Name {
log.Error("Flow already exists but not the same info, something is wrong!")
}
// Set maxBw to the minimum of the 2 ends if a max is not forced
if maxBw == 0 {
if srcElement.ConfiguredNetChar.ThroughputUl < destElement.ConfiguredNetChar.ThroughputDl {
maxBw = srcElement.ConfiguredNetChar.ThroughputUl
} else {
maxBw = destElement.ConfiguredNetChar.ThroughputDl
}
}
flow.ConfiguredNetChar.Throughput = maxBw
//using distribution to pass it down, since it is global, they all have the same data at this point, so use any elements distribution
flow.ConfiguredNetChar.Distribution = srcElement.ConfiguredNetChar.Distribution
flow.ConfiguredNetChar.Latency = 0
flow.ConfiguredNetChar.Jitter = 0
flow.ConfiguredNetChar.PacketLoss = 0
// Create a new path for this flow
oldPath := flow.Path
flow.Path = algo.createPath(flowName, srcElement, destElement, model, pduSessions)
}
func (algo *SegmentAlgorithm) comparePath(oldPath *SegAlgoPath, newPath *SegAlgoPath) bool {
if oldPath == nil {
return true
}
return true
}
for index, newSegment := range newPath.Segments {
if newSegment.Name != oldPath.Segments[index].Name {
return true
}
}
func (algo *SegmentAlgorithm) createPath(flowName string, srcElement *SegAlgoNetElem, destElement *SegAlgoNetElem,
model *mod.Model, pduSessions map[string]map[string]*dataModel.PduSessionInfo) *SegAlgoPath {
direction := ""
var segment *SegAlgoSegment
path := new(SegAlgoPath)
path.Name = flowName
Kevin Di Lallo
committed
path.Disconnected = false
//app segment ul, dl
direction = "uplink"
segment = algo.createSegment(srcElement.Name, direction, flowName, model)
path.Segments = append(path.Segments, segment)
direction = "downlink"
segment = algo.createSegment(destElement.Name, direction, flowName, model)
path.Segments = append(path.Segments, segment)
//node segment ul, dl
direction = "uplink"
segment = algo.createSegment(srcElement.PhyLocName, direction, flowName, model)
path.Segments = append(path.Segments, segment)
direction = "downlink"
segment = algo.createSegment(destElement.PhyLocName, direction, flowName, model)
path.Segments = append(path.Segments, segment)
//if on same node, return
if srcElement.PhyLocName == destElement.PhyLocName {
return path
}
Kevin Di Lallo
committed
// Check if src or dest Physical location is disconnected
// NOTE: Does not apply to apps on same physical node
var srcPhyLoc *dataModel.PhysicalLocation
Kevin Di Lallo
committed
srcPhyLocNode := model.GetNode(srcElement.PhyLocName)
if srcPhyLocNode != nil {
var ok bool
if srcPhyLoc, ok = srcPhyLocNode.(*dataModel.PhysicalLocation); ok {
Kevin Di Lallo
committed
path.Disconnected = path.Disconnected || !srcPhyLoc.Connected
}
}
var destPhyLoc *dataModel.PhysicalLocation
Kevin Di Lallo
committed
destPhyLocNode := model.GetNode(destElement.PhyLocName)
if destPhyLocNode != nil {
var ok bool
if destPhyLoc, ok = destPhyLocNode.(*dataModel.PhysicalLocation); ok {
Kevin Di Lallo
committed
path.Disconnected = path.Disconnected || !destPhyLoc.Connected
}
}
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
// If in PDU Connectivity mode, check if src or dest UE has PDU connectivity to DN
// NOTE: For LADN, additionally verify that UE and edge app are in the same zone
if !path.Disconnected && algo.ConnectivityModel == mod.ConnectivityModelPdu {
if mod.IsUe(srcPhyLoc.Type_) {
pduMap, ok := pduSessions[srcPhyLoc.Name]
if !ok || mod.IsUe(destPhyLoc.Type_) || destPhyLoc.DataNetwork == nil {
path.Disconnected = true
} else if destPhyLoc.DataNetwork.Ladn && srcElement.ZoneName != destElement.ZoneName {
// LADN & not in same zone
path.Disconnected = true
} else {
// Find matching DNN
var found bool
for _, pdu := range pduMap {
if pdu.Dnn == destPhyLoc.DataNetwork.Dnn {
found = true
break
}
}
if !found {
path.Disconnected = true
}
}
}
if mod.IsUe(destPhyLoc.Type_) {
pduMap, ok := pduSessions[destPhyLoc.Name]
if !ok || mod.IsUe(srcPhyLoc.Type_) || srcPhyLoc.DataNetwork == nil {
path.Disconnected = true
} else if srcPhyLoc.DataNetwork.Ladn && srcElement.ZoneName != destElement.ZoneName {
// LADN & not in same zone
path.Disconnected = true
} else {
// Find matching DNN
var found bool
for _, pdu := range pduMap {
if pdu.Dnn == srcPhyLoc.DataNetwork.Dnn {
found = true
break
}
}
if !found {
path.Disconnected = true
}
}
}
}
//network location ul, dl
if srcElement.Type == "UE" {
direction = "uplink"
segment = algo.createSegment(srcElement.PoaName, direction, flowName, model)
path.Segments = append(path.Segments, segment)
}
if destElement.Type == "UE" {
direction = "downlink"
segment = algo.createSegment(destElement.PoaName, direction, flowName, model)
path.Segments = append(path.Segments, segment)
}
//if on same network location (poa), return
if srcElement.PoaName == destElement.PoaName {
return path
}
//zone ul, dl
segment = algo.createSegment(srcElement.ZoneName, direction, flowName, model)
path.Segments = append(path.Segments, segment)
}
direction = "downlink"
segment = algo.createSegment(destElement.ZoneName, direction, flowName, model)
path.Segments = append(path.Segments, segment)
}
//if in same zone, return
if srcElement.ZoneName == destElement.ZoneName {
return path
}
//domain ul, dl
segment = algo.createSegment(srcElement.DomainName, direction, flowName, model)
path.Segments = append(path.Segments, segment)
}
direction = "downlink"
segment = algo.createSegment(destElement.DomainName, direction, flowName, model)
path.Segments = append(path.Segments, segment)
}
//if in same domain, return
if srcElement.DomainName == destElement.DomainName {
return path
}
//interdomain
//computing twice while in the interdomain
direction = "uplink"
segment = algo.createSegment(model.GetScenarioName(), direction, flowName, model)
path.Segments = append(path.Segments, segment)
direction = "downlink"
segment = algo.createSegment(model.GetScenarioName(), direction, flowName, model)
path.Segments = append(path.Segments, segment)
return path
}
// createSegment -
func (algo *SegmentAlgorithm) createSegment(elemName string, direction string, flowName string, model *mod.Model) *SegAlgoSegment {
// Create new segment if it does not exist
segmentName := elemName + direction
segment := algo.SegmentMap[segmentName]
if segment == nil {
segment = new(SegAlgoSegment)
segment.Name = segmentName
// Retrieve max throughput from model using model scenario element name
nc := getNetChars(elemName, model)
if direction == "uplink" {
ncThroughput = float64(nc.ThroughputUl)
} else {
ncThroughput = float64(nc.ThroughputDl)
}
segment.ConfiguredNetChar.Latency = float64(nc.Latency)
segment.ConfiguredNetChar.Jitter = float64(nc.LatencyVariation)
segment.ConfiguredNetChar.PacketLoss = float64(nc.PacketLoss)
segment.ConfiguredNetChar.Throughput = float64(ncThroughput)
// Initialize segment-specific BW attributes from Algo config
if algo.Config.IsPercentage {
segment.MaxBwPerInactiveFlow = algo.Config.MaxBwPerInactiveFlow * maxThroughput / 100
if segment.MaxBwPerInactiveFlow < algo.Config.MaxBwPerInactiveFlowFloor {
segment.MaxBwPerInactiveFlow = algo.Config.MaxBwPerInactiveFlowFloor
}
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
segment.MinActivityThreshold = algo.Config.MinActivityThreshold * maxThroughput / 100
segment.IncrementalStep = algo.Config.IncrementalStep * maxThroughput / 100
segment.InactivityIncrementalStep = algo.Config.InactivityIncrementalStep * maxThroughput / 100
segment.TolerationThreshold = algo.Config.TolerationThreshold * maxThroughput / 100
segment.ActionUpperThreshold = algo.Config.ActionUpperThreshold * maxThroughput / 100
} else {
segment.MaxBwPerInactiveFlow = algo.Config.MaxBwPerInactiveFlow
segment.MinActivityThreshold = algo.Config.MinActivityThreshold
segment.IncrementalStep = algo.Config.IncrementalStep
segment.InactivityIncrementalStep = algo.Config.InactivityIncrementalStep
segment.TolerationThreshold = algo.Config.TolerationThreshold
segment.ActionUpperThreshold = algo.Config.ActionUpperThreshold
}
// Add segment to map
algo.SegmentMap[segmentName] = segment
}
// Add flow to segment flow map
flow := algo.FlowMap[flowName]
if flow != nil {
segment.Flows = append(segment.Flows, flow)
} else {
log.Error("Missing flow: ", flowName)
}
return segment
}
// getMetricsThroughputEntryHandler -
func (algo *SegmentAlgorithm) getMetricsThroughputEntryHandler(key string, fields map[string]string, userData interface{}) error {
subKey := strings.Split(key, ":")
for trafficFrom, throughput := range fields {
Kevin Di Lallo
committed
flow := algo.FlowMap[trafficFrom+":"+subKey[len(subKey)-2]]
if flow != nil {
value, _ := strconv.ParseFloat(throughput, 64)
flow.CurrentThroughput = value
}
}
return nil
}
func (algo *SegmentAlgorithm) reCalculateNetChar() {
//reset every planned throughput values for every flow since they will start to populate those
for _, flow := range algo.FlowMap {
resetComputedNetChar(flow)
Kevin Di Lallo
committed
// For flows passing through a disconnected Physical location, set Packet loss to 100%
if flow.Path != nil && flow.Path.Disconnected {
flow.ComputedPacketLoss = 100
}
}
//all segments determined by the scenario
for _, segment := range algo.SegmentMap {
//throughput specific
updateMaxFairShareBwPerFlow(segment)
unusedBw, list := needToReevaluate(segment)
if list != nil {
if algo.Config.LogVerbose {
log.Info("Segment ", segment.Name, " reevaluation result - BW unused: ", unusedBw, "***Flows to evaluate***: ", printFlowNamesFromList(list))
}
recalculateSegmentBw(segment, list, unusedBw)
}
//latency, jitter, packet-loss computation for each flow in each segment
for _, flow := range segment.Flows {
flow.ComputedLatency += segment.ConfiguredNetChar.Latency
flow.ComputedJitter += segment.ConfiguredNetChar.Jitter
if flow.ComputedPacketLoss == 0 {
flow.ComputedPacketLoss = segment.ConfiguredNetChar.PacketLoss
Kevin Di Lallo
committed
} else if segment.ConfiguredNetChar.PacketLoss != 0 {
flow.ComputedPacketLoss += (segment.ConfiguredNetChar.PacketLoss * ((100 - flow.ComputedPacketLoss) / 100))
}
}
if algo.Config.LogVerbose {
printFlows(segment)
}
}
}
// resetComputedNetChar -
func resetComputedNetChar(flow *SegAlgoFlow) {
flow.MaxPlannedThroughput = MAX_THROUGHPUT
flow.MaxPlannedLowerBound = MAX_THROUGHPUT
flow.MaxPlannedUpperBound = MAX_THROUGHPUT
flow.ComputedLatency = 0
flow.ComputedJitter = 0
flow.ComputedPacketLoss = 0
}
// recalculateSegmentBw -
func recalculateSegmentBw(segment *SegAlgoSegment, flowsToEvaluate []*SegAlgoFlow, unusedBw float64) {
nbEvaluatedflowsLeft := len(flowsToEvaluate)
if segment.CurrentThroughput > segment.ConfiguredNetChar.Throughput || nbEvaluatedflowsLeft >= 1 {
//category 1 Flows
for _, flow := range flowsToEvaluate {
if flow.CurrentThroughput+segment.IncrementalStep > segment.MaxFairShareBwPerFlow {
flow.PlannedThroughput = segment.MaxFairShareBwPerFlow //category 2 or 3
} else {
if flow.CurrentThroughput <= segment.MinActivityThreshold {
flow.PlannedThroughput = segment.MaxBwPerInactiveFlow
flow.PlannedUpperBound = segment.InactivityIncrementalStep
flow.PlannedLowerBound = 0
} else {
flow.PlannedThroughput = flow.CurrentThroughput + segment.IncrementalStep
if flow.PlannedThroughput > flow.ConfiguredNetChar.Throughput {
flow.PlannedThroughput = flow.ConfiguredNetChar.Throughput
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
}
flow.PlannedUpperBound = flow.PlannedThroughput - segment.ActionUpperThreshold
flow.PlannedLowerBound = flow.PlannedUpperBound - segment.TolerationThreshold
//lower bound cannot be less than min threshold
if flow.PlannedLowerBound < segment.MinActivityThreshold {
flow.PlannedLowerBound = segment.MinActivityThreshold
}
}
nbEvaluatedflowsLeft--
if flow.PlannedThroughput != segment.MaxBwPerInactiveFlow {
unusedBw -= flow.PlannedThroughput
}
}
}
var extra float64
if nbEvaluatedflowsLeft > 0 {
//category 2 Flows
for _, flow := range flowsToEvaluate {
if flow.PlannedThroughput == segment.MaxFairShareBwPerFlow {
if flow.CurrentThroughput < segment.MaxFairShareBwPerFlow {
nbEvaluatedflowsLeft--
if nbEvaluatedflowsLeft == 0 { //allocate everything of what is left
flow.PlannedThroughput = unusedBw
if flow.PlannedThroughput > flow.ConfiguredNetChar.Throughput {
flow.PlannedThroughput = flow.ConfiguredNetChar.Throughput
}
flow.PlannedUpperBound = flow.PlannedThroughput
flow.PlannedLowerBound = flow.PlannedThroughput - segment.TolerationThreshold
//lower bound cannot be less than min threshold
if flow.PlannedLowerBound < segment.MinActivityThreshold {
flow.PlannedLowerBound = segment.MinActivityThreshold
}
} else {
flow.PlannedThroughput = flow.CurrentThroughput + segment.IncrementalStep
if flow.PlannedThroughput > flow.ConfiguredNetChar.Throughput {
flow.PlannedThroughput = flow.ConfiguredNetChar.Throughput
}
flow.PlannedUpperBound = flow.PlannedThroughput - segment.ActionUpperThreshold
flow.PlannedLowerBound = flow.PlannedUpperBound - segment.TolerationThreshold
//lower bound cannot be less than min threshold
if flow.PlannedLowerBound < segment.MinActivityThreshold {
flow.PlannedLowerBound = segment.MinActivityThreshold
}
}
unusedBw -= flow.PlannedThroughput
}
}
}
if nbEvaluatedflowsLeft > 0 {
if nbEvaluatedflowsLeft >= 1 {
extra = (unusedBw - float64(nbEvaluatedflowsLeft)*segment.MaxFairShareBwPerFlow) / float64(nbEvaluatedflowsLeft)
} else {
extra = 0
}
//category 3
for _, flow := range flowsToEvaluate {
if flow.PlannedThroughput == segment.MaxFairShareBwPerFlow && flow.CurrentThroughput >= segment.MaxFairShareBwPerFlow {
flow.PlannedThroughput = segment.MaxFairShareBwPerFlow + extra
if flow.PlannedThroughput > flow.ConfiguredNetChar.Throughput {
flow.PlannedThroughput = flow.ConfiguredNetChar.Throughput
}
flow.PlannedUpperBound = flow.PlannedThroughput - segment.ActionUpperThreshold
flow.PlannedLowerBound = flow.PlannedUpperBound - segment.TolerationThreshold
unusedBw -= flow.PlannedThroughput
}
}
}
}
}
//we allocate all the bw to active users and very low values to inactive ones if there is any residual
//using a minimum value that is close but not exactly 0, since we use float operations and approximation may not lead to a perfect
if unusedBw >= 1 {
for _, flow := range flowsToEvaluate {
if flow.CurrentThroughput > segment.MinActivityThreshold {
flow.PlannedThroughput = segment.MaxFairShareBwPerFlow
if flow.PlannedThroughput > flow.ConfiguredNetChar.Throughput {
flow.PlannedThroughput = flow.ConfiguredNetChar.Throughput
}
flow.PlannedLowerBound = 0
flow.PlannedUpperBound = 0
}
}
}
//update or not the throughput
for _, flow := range flowsToEvaluate {
if flow.PlannedThroughput < flow.MaxPlannedThroughput {
if flow.PlannedThroughput <= 0 {
log.Error("Max : ", flow.PlannedThroughput, "---", flow.MaxPlannedThroughput)
}
flow.MaxPlannedThroughput = flow.PlannedThroughput
flow.MaxPlannedLowerBound = flow.PlannedLowerBound
flow.MaxPlannedUpperBound = flow.PlannedUpperBound
}
}
}
// needToReevaluate - determines which Flows must be recalculated for bandwidth sharing within the segment
func needToReevaluate(segment *SegAlgoSegment) (unusedBw float64, list []*SegAlgoFlow) {
unusedBw = segment.ConfiguredNetChar.Throughput
//how many active connections that needs to be taken into account
for _, flow := range segment.Flows {
Kevin Di Lallo
committed
if flow.CurrentThroughput < flow.AllocatedThroughputLowerBound ||
flow.CurrentThroughput > flow.AllocatedThroughputUpperBound ||
flow.CurrentThroughput >= segment.MaxFairShareBwPerFlow ||
flow.UpdateRequired {
list = append(list, flow)
} else {
//no need to reevalute algo one, so removing its allocated bw from the available one
if flow.CurrentThroughput >= segment.MinActivityThreshold {
unusedBw -= flow.AllocatedThroughput
}
}
}
return unusedBw, list
}
// updateMaxFairShareBwPerFlow -
func updateMaxFairShareBwPerFlow(segment *SegAlgoSegment) {
nbActiveConnections := 0
for _, flow := range segment.Flows {
if flow.CurrentThroughput >= segment.MinActivityThreshold {
nbActiveConnections++
}
}
if nbActiveConnections >= 1 {
segment.MaxFairShareBwPerFlow = segment.ConfiguredNetChar.Throughput / float64(nbActiveConnections)
} else {
segment.MaxFairShareBwPerFlow = MAX_THROUGHPUT
}
}
// getNetChars - Retrieve all network characteristics from model for provided element name
func getNetChars(elemName string, model *mod.Model) *dataModel.NetworkCharacteristics {
nc := new(dataModel.NetworkCharacteristics)
// Get Node
node := model.GetNode(elemName)
if node == nil {
log.Error("Error finding element: " + elemName)
}
// Get max throughput based on Node Type, as well as other netcharse
if p, ok := node.(*dataModel.Process); ok {
} else if pl, ok := node.(*dataModel.PhysicalLocation); ok {
} else if nl, ok := node.(*dataModel.NetworkLocation); ok {
} else if zone, ok := node.(*dataModel.Zone); ok {
} else if domain, ok := node.(*dataModel.Domain); ok {
} else if deployment, ok := node.(*dataModel.Deployment); ok {
} else {
log.Error("Error casting element: " + elemName)
}
// For compatiblity reasons, set to default value if 0
if nc.ThroughputUl == 0 {
nc.ThroughputUl = DEFAULT_THROUGHPUT_LINK
if nc.ThroughputDl == 0 {
nc.ThroughputDl = DEFAULT_THROUGHPUT_LINK
}
}
// printFlowNamesFromList -
func printFlowNamesFromList(list []*SegAlgoFlow) string {
str := ""
for _, flow := range list {
str += flow.Name + "."
}
return str
}
// printFlows -
func printFlows(segment *SegAlgoSegment) {
log.Info("Flows on segment ", segment.Name)
for _, flow := range segment.Flows {
log.Info(printFlow(flow))
}
}
// printFlow -
func printFlow(flow *SegAlgoFlow) string {
s0 := fmt.Sprintf("%x", &flow)
s1 := flow.Name + "(" + s0 + ")"
s2t := fmt.Sprintf("%f", flow.ConfiguredNetChar.Throughput)
s2l := fmt.Sprintf("%f", flow.ConfiguredNetChar.Latency)
s2j := fmt.Sprintf("%f", flow.ConfiguredNetChar.Jitter)
s2d := flow.ConfiguredNetChar.Distribution
s2p := fmt.Sprintf("%f", flow.ConfiguredNetChar.PacketLoss)
s3a := fmt.Sprintf("%f", flow.AllocatedThroughput)
s4a := fmt.Sprintf("%f", flow.AllocatedThroughputLowerBound)
s5a := fmt.Sprintf("%f", flow.AllocatedThroughputUpperBound)
s3m := fmt.Sprintf("%f", flow.MaxPlannedThroughput)
s4m := fmt.Sprintf("%f", flow.MaxPlannedLowerBound)
s5m := fmt.Sprintf("%f", flow.MaxPlannedUpperBound)
s3p := fmt.Sprintf("%f", flow.PlannedThroughput)
s4p := fmt.Sprintf("%f", flow.PlannedLowerBound)
s5p := fmt.Sprintf("%f", flow.PlannedUpperBound)
s6 := fmt.Sprintf("%f", flow.CurrentThroughput)
s7l := fmt.Sprintf("%f", flow.ComputedLatency)
s7j := fmt.Sprintf("%f", flow.ComputedJitter)
s7p := fmt.Sprintf("%f", flow.ComputedPacketLoss)
s8l := fmt.Sprintf("%f", flow.AppliedNetChar.Latency)
s8j := fmt.Sprintf("%f", flow.AppliedNetChar.Jitter)
s8p := fmt.Sprintf("%f", flow.AppliedNetChar.PacketLoss)
s8d := flow.AppliedNetChar.Distribution
str := s1 + ": " + "Current: " + s6 + " - Configured: [" + s2t + "-" + s2l + "-" + s2j + "-" + s2p + "-" + s2d + "] Allocated: " + s3a + "[" + s4a + "-" + s5a + "]" + " - MaxPlanned: " + s3m + "[" + s4m + "-" + s5m + "]" + " - Planned: " + s3p + "[" + s4p + "-" + s5p + "] Computed Net Char: [" + s7l + "-" + s7j + "-" + s7p + "] Applied Net Char: [" + s8l + "-" + s8j + "-" + s8p + "-" + s8d + "]"
str += printPath(flow.Path)
return str