Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*
* Copyright (c) 2019 InterDigital Communications, Inc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use algo file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package netchar
import (
"errors"
"fmt"
"strconv"
"strings"
"time"
ceModel "github.com/InterDigitalInc/AdvantEDGE/go-packages/meep-ctrl-engine-model"
log "github.com/InterDigitalInc/AdvantEDGE/go-packages/meep-logger"
mod "github.com/InterDigitalInc/AdvantEDGE/go-packages/meep-model"
redis "github.com/InterDigitalInc/AdvantEDGE/go-packages/meep-redis"
)
const MAX_THROUGHPUT = 9999999999
const THROUGHPUT_UNIT = 1000000 //convert from Mbps to bps
const DEFAULT_THROUGHPUT_LINK = 1000.0
const metricsDb = 0
const moduleMetrics string = "metrics"
// SegAlgoConfig - Segment Algorithm Config
type SegAlgoConfig struct {
// Segment config
MaxBwPerInactiveFlow float64
MaxBwPerInactiveFlowFloor float64
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
MinActivityThreshold float64
IncrementalStep float64
InactivityIncrementalStep float64
TolerationThreshold float64
ActionUpperThreshold float64
// Debug Config
IsPercentage bool
LogVerbose bool
}
// SegAlgoSegment -
type SegAlgoSegment struct {
Name string
MaxThroughput float64
MaxFairShareBwPerFlow float64
CurrentThroughput float64
MaxBwPerInactiveFlow float64
MinActivityThreshold float64
IncrementalStep float64
InactivityIncrementalStep float64
TolerationThreshold float64
ActionUpperThreshold float64
Flows []*SegAlgoFlow
}
// SegAlgoFlow -
type SegAlgoFlow struct {
Name string
SrcNetElem string
DstNetElem string
MaximumThroughput float64 //config
AllocatedThroughput float64 //allocated
AllocatedThroughputLowerBound float64 //allocated
AllocatedThroughputUpperBound float64 //allocated
MaxPlannedThroughput float64
MaxPlannedLowerBound float64
MaxPlannedUpperBound float64
PlannedThroughput float64
PlannedLowerBound float64
PlannedUpperBound float64
CurrentThroughput float64 //measured
CurrentThroughputEgress float64 //measured
Path *SegAlgoPath
}
// SegAlgoPath -
type SegAlgoPath struct {
Name string
Segments []*SegAlgoSegment
}
// SegAlgoNetElem -
type SegAlgoNetElem struct {
Name string
Type string
PhyLocName string
PoaName string
ZoneName string
DomainName string
MaxThroughput float64
}
// SegmentAlgorithm -
type SegmentAlgorithm struct {
FlowMap map[string]*SegAlgoFlow
SegmentMap map[string]*SegAlgoSegment
Config SegAlgoConfig
rc *redis.Connector
}
// NewSegmentAlgorithm - Create, Initialize and connect
func NewSegmentAlgorithm(redisAddr string) (*SegmentAlgorithm, error) {
// Create new instance & set default config
var err error
var algo SegmentAlgorithm
algo.FlowMap = make(map[string]*SegAlgoFlow)
algo.SegmentMap = make(map[string]*SegAlgoSegment)
algo.Config.MaxBwPerInactiveFlow = 20.0
algo.Config.MaxBwPerInactiveFlowFloor = 6.0
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
algo.Config.MinActivityThreshold = 0.3
algo.Config.IncrementalStep = 3.0
algo.Config.InactivityIncrementalStep = 1.0
algo.Config.ActionUpperThreshold = 1.0
algo.Config.TolerationThreshold = 4.0
algo.Config.IsPercentage = true
// Create connection to Metrics Redis DB & flush entries
algo.rc, err = redis.NewConnector(redisAddr, metricsDb)
if err != nil {
log.Error("Failed connection to Metrics redis DB. Error: ", err)
return nil, err
}
_ = algo.rc.DBFlush(moduleMetrics)
log.Info("Connected to Metrics redis DB")
return &algo, nil
}
// ProcessScenario -
func (algo *SegmentAlgorithm) ProcessScenario(model *mod.Model) error {
var netElemList []SegAlgoNetElem
// Process empty scenario
if model.GetScenarioName() == "" {
// Remove any existing metrics
algo.deleteMetricsEntries()
}
// Clear segment & flow maps
algo.FlowMap = make(map[string]*SegAlgoFlow)
algo.SegmentMap = make(map[string]*SegAlgoSegment)
// Process active scenario
procNames := model.GetNodeNames("CLOUD-APP")
procNames = append(procNames, model.GetNodeNames("EDGE-APP")...)
procNames = append(procNames, model.GetNodeNames("UE-APP")...)
// Create NetElem for each scenario process
for _, name := range procNames {
// Retrieve node & context from model
node := model.GetNode(name)
if node == nil {
err := errors.New("Error finding process: " + name)
return err
}
proc, ok := node.(*ceModel.Process)
if !ok {
err := errors.New("Error casting process: " + name)
return err
}
ctx := model.GetNodeContext(name)
if ctx == nil {
err := errors.New("Error getting context for process: " + name)
return err
}
Kevin Di Lallo
committed
nodeCtx, ok := ctx.(*mod.NodeContext)
if !ok {
err := errors.New("Error casting context for process: " + name)
return err
}
// Create & populate new element
element := new(SegAlgoNetElem)
element.Name = proc.Name
Kevin Di Lallo
committed
element.PhyLocName = nodeCtx.Parents[mod.PhyLoc]
element.DomainName = nodeCtx.Parents[mod.Domain]
// Type-specific values
element.Type = model.GetNodeType(element.PhyLocName)
if element.Type == "UE" || element.Type == "FOG" {
Kevin Di Lallo
committed
element.PoaName = nodeCtx.Parents[mod.NetLoc]
}
if element.Type != "DC" {
Kevin Di Lallo
committed
element.ZoneName = nodeCtx.Parents[mod.Zone]
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
}
// Set max App Throughput (use default if set to 0)
element.MaxThroughput = float64(proc.AppThroughput)
if element.MaxThroughput == 0 {
element.MaxThroughput = DEFAULT_THROUGHPUT_LINK
}
// Add element to list
netElemList = append(netElemList, *element)
}
// Create all flows using Network Element list
for _, elemSrc := range netElemList {
for _, elemDest := range netElemList {
if elemSrc.Name != elemDest.Name {
// Create flow
algo.populateFlow(elemSrc.Name+":"+elemDest.Name, &elemSrc, &elemDest, 0, model)
// Create DB entry to begin collecting metrics for this flow
algo.createMetricsEntry(elemSrc.Name, elemDest.Name)
}
}
}
// Log segments & flows in Verbose mode
if algo.Config.LogVerbose {
log.Info("Segments map: ", algo.SegmentMap)
log.Info("Flows map: ", algo.FlowMap)
}
return nil
}
// CalculateNetChar - Run algorithm to recalculate network characteristics using latest scenario & metrics
func (algo *SegmentAlgorithm) CalculateNetChar() []FlowNetChar {
var updatedNetCharList []FlowNetChar
currentTime := time.Now()
algo.logTimeLapse(¤tTime, "time to print")
// Update flow with latest metrics
keyName := moduleMetrics + ":*:throughput"
err := algo.rc.ForEachEntry(keyName, algo.getMetricsThroughputEntryHandler, nil)
if err != nil {
log.Error("Failed to get entries: ", err)
return updatedNetCharList
}
algo.logTimeLapse(¤tTime, "time to update metrics")
// Recalculate segment BW allocation for each flow
algo.reCalculateThroughputs()
algo.logTimeLapse(¤tTime, "time to recalculate")
// Prepare list of updated flows
for _, flow := range algo.FlowMap {
if flow.MaxPlannedThroughput != flow.AllocatedThroughput && flow.MaxPlannedThroughput != MAX_THROUGHPUT {
log.Info("Update allocated bandwidth for ", flow.Name, " to ", flow.MaxPlannedThroughput)
flow.AllocatedThroughput = flow.MaxPlannedThroughput
flow.AllocatedThroughputLowerBound = flow.MaxPlannedLowerBound
flow.AllocatedThroughputUpperBound = flow.MaxPlannedUpperBound
flowNetChar := FlowNetChar{flow.SrcNetElem, flow.DstNetElem, 0, 0, 0, flow.AllocatedThroughput}
updatedNetCharList = append(updatedNetCharList, flowNetChar)
}
}
return updatedNetCharList
}
// SetConfigAttribute
func (algo *SegmentAlgorithm) SetConfigAttribute(fieldName string, fieldValue string) {
switch fieldName {
case "maxBwPerInactiveFlow":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.MaxBwPerInactiveFlow = value
}
case "maxBwPerInactiveFlowFloor":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.MaxBwPerInactiveFlowFloor = value
}
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
case "minActivityThreshold":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.MinActivityThreshold = value
}
case "incrementalStep":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.IncrementalStep = value
}
case "inactivityIncrementalStep":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.InactivityIncrementalStep = value
}
case "tolerationThreshold":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.TolerationThreshold = value
}
case "actionUpperThreshold":
value, err := strconv.ParseFloat(fieldValue, 64)
if err == nil {
algo.Config.ActionUpperThreshold = value
}
case "isPercentage":
if "yes" == fieldValue {
algo.Config.IsPercentage = true
} else {
algo.Config.IsPercentage = false
}
case "logVerbose":
if "yes" == fieldValue {
algo.Config.LogVerbose = true
}
default:
}
}
// logTimeLapse -
func (algo *SegmentAlgorithm) logTimeLapse(currentTime *time.Time, message string) {
if algo.Config.LogVerbose {
elapsed := time.Since(*currentTime)
log.WithFields(log.Fields{
"meep.log.component": moduleName,
"meep.time.location": message,
"meep.time.exec": elapsed,
}).Info("Measurements log")
*currentTime = time.Now()
}
}
// createMetricsEntry -
func (algo *SegmentAlgorithm) createMetricsEntry(srcElem string, dstElem string) {
var creationTime = make(map[string]interface{})
creationTime["creationTime"] = time.Now()
// Entries are created with no values, sidecar will only fill them, otherwise, won't be cleared
_ = algo.rc.SetEntry(moduleMetrics+":"+dstElem+":"+srcElem, creationTime)
_ = algo.rc.SetEntry(moduleMetrics+":"+dstElem+":throughput", creationTime)
}
// deleteMetricsEntries -
func (algo *SegmentAlgorithm) deleteMetricsEntries() {
for _, flow := range algo.FlowMap {
// Entries are created with no values, sidecar will only fill them, otherwise, won't be cleared
_ = algo.rc.DelEntry(moduleMetrics + ":" + flow.DstNetElem + ":" + flow.SrcNetElem)
_ = algo.rc.DelEntry(moduleMetrics + ":" + flow.DstNetElem + ":throughput")
}
}
// populateFlow - Create/Update flow
func (algo *SegmentAlgorithm) populateFlow(flowName string, srcElement *SegAlgoNetElem, destElement *SegAlgoNetElem, maxBw float64, model *mod.Model) {
// Use existing flow if present or Create new flow
flow := algo.FlowMap[flowName]
if flow == nil {
flow = new(SegAlgoFlow)
flow.Name = flowName
flow.SrcNetElem = srcElement.Name
flow.DstNetElem = destElement.Name
algo.FlowMap[flowName] = flow
} else if flow.Name != flowName || flow.SrcNetElem != srcElement.Name && flow.DstNetElem != destElement.Name {
log.Error("Flow already exists but not the same info, something is wrong!")
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
}
// Set maxBw to the minimum of the 2 ends if a max is not forced
if maxBw == 0 {
if srcElement.MaxThroughput < destElement.MaxThroughput {
maxBw = srcElement.MaxThroughput
} else {
maxBw = destElement.MaxThroughput
}
}
flow.MaximumThroughput = maxBw
// Create a new path for this flow
flow.Path = algo.createPath(flowName, srcElement, destElement, model)
}
// createPath -
func (algo *SegmentAlgorithm) createPath(flowName string, srcElement *SegAlgoNetElem, destElement *SegAlgoNetElem, model *mod.Model) *SegAlgoPath {
//Tier 1 -- check if they are in the same poa
//Tier 2 -- check if they are in the same zone, but different poa
//Tier 3 -- check if they are in the same domain, but different zone
//Tier 4 -- check if they are in different domains
direction := ""
segmentName := ""
var segment *SegAlgoSegment
path := new(SegAlgoPath)
path.Name = flowName
//Tier 1
if srcElement.PoaName != "" {
//segments from element to POA
//2 possibilities
//UE->POA
//segments for srcElement(app) -> 1A. UE-Node uplink-> 2A. POA-TermLink uplink
//FOG-POA
//segments for srcElement(app) -> 1B. FogNode uplink
direction = "uplink"
//segment 1A or 1B
segmentName = srcElement.PhyLocName + "-" + direction
segment = algo.createSegment(segmentName, flowName, srcElement.PhyLocName, model)
path.Segments = append(path.Segments, segment)
if srcElement.Type == "UE" {
//segment 2A
segmentName = srcElement.PoaName + "-" + direction
segment = algo.createSegment(segmentName, flowName, srcElement.PoaName, model)
path.Segments = append(path.Segments, segment)
}
}
if destElement.PoaName != "" {
//segments from POA to element
//2 possibilities
//POA->FOG
//3A. Fog-Node downlink -> dstElement(app)
//POA-UE
//2B. POA-TermLink downlink -> 3B. UE-Node downlink -> dstElement(app)
direction = "downlink"
if destElement.Type == "UE" {
//segment 2B
segmentName = destElement.PoaName + "-" + direction
segment = algo.createSegment(segmentName, flowName, destElement.PoaName, model)
path.Segments = append(path.Segments, segment)
}
//segment 3A or 3B
segmentName = destElement.PhyLocName + "-" + direction
segment = algo.createSegment(segmentName, flowName, destElement.PhyLocName, model)
path.Segments = append(path.Segments, segment)
}
//Tier 2
//if same zone, different POA, OR no POA at all (Edge-Edge)
if (srcElement.PoaName != destElement.PoaName) || (srcElement.PoaName == "" && destElement.PoaName == "") {
//segments to intraZone backbone
//2 possibilities
//EDGE->IntraZoneBackbone
//srcElement(app) -> 1A. Edge-Node uplink -> 2A. IntraZone uplink
//POA->IntraZoneBackbone
//2B. IntraZone uplink
direction = "uplink"
if srcElement.Type == "EDGE" {
//segment 1A
segmentName = srcElement.PhyLocName + "-" + direction
segment = algo.createSegment(segmentName, flowName, srcElement.PhyLocName, model)
path.Segments = append(path.Segments, segment)
//segment 2A
segmentName = srcElement.ZoneName + "-" + srcElement.PhyLocName + "-" + direction
} else {
//segment 2B
segmentName = srcElement.ZoneName + "-" + srcElement.PoaName + "-" + direction
}
if srcElement.ZoneName != "" {
segment = algo.createSegment(segmentName, flowName, srcElement.ZoneName, model)
path.Segments = append(path.Segments, segment)
}
//segments from intraZone backbone
//2 possibilities
//IntraZoneBackbone->EDGE
//3A. IntraZone downlink -> 4A. Edge-Node downlink -> srcElement(app)
//IntraZoneBackbone->POA
//3B. IntraZone downlink
direction = "downlink"
if destElement.Type == "EDGE" {
//segment 4A
segmentName = destElement.PhyLocName + "-" + direction
segment = algo.createSegment(segmentName, flowName, destElement.PhyLocName, model)
path.Segments = append(path.Segments, segment)
//segment 3A
segmentName = destElement.ZoneName + "-" + destElement.PhyLocName + "-" + direction
} else {
//segment 3B
segmentName = destElement.ZoneName + "-" + destElement.PoaName + "-" + direction
}
if destElement.ZoneName != "" {
segment = algo.createSegment(segmentName, flowName, destElement.ZoneName, model)
path.Segments = append(path.Segments, segment)
}
}
//Tier 3
if srcElement.ZoneName != destElement.ZoneName {
//segments to interZone backbone
//1 possibility
//Zone->InterZoneBackbone
//1A. Zone uplink -> InterZone backbone (if zone exist)
direction = "uplink"
//segment 1A
if srcElement.ZoneName != "" {
segmentName = srcElement.ZoneName + "-" + direction
segment = algo.createSegment(segmentName, flowName, srcElement.DomainName, model)
path.Segments = append(path.Segments, segment)
}
//segments from interZone backbone
//1 possibility
//InterZoneBackbone->Zone
//2A. InterZone backbone -> Zone downlink (if zone exist)
direction = "downlink"
//segment 2A
if destElement.ZoneName != "" {
segmentName = destElement.ZoneName + "-" + direction
segment = algo.createSegment(segmentName, flowName, destElement.DomainName, model)
path.Segments = append(path.Segments, segment)
}
}
//Tier 4
if srcElement.DomainName != destElement.DomainName {
//segments to interDomain backbone
//1 possibility
//InterZoneBackbone->InterDomainBackbone
//1A. InterZone backbone -> Domain backbone
direction = "uplink"
//segment 1A
segmentName = srcElement.DomainName + "-" + direction
segment = algo.createSegment(segmentName, flowName, model.GetScenarioName(), model)
path.Segments = append(path.Segments, segment)
//segments from interDomain backbone
//1 possibility
//InterDomainBackbone->InterZoneBackbone
//2A. Domain backbone -> InterZone backbone
direction = "downlink"
//segment 2A
segmentName = destElement.DomainName + "-" + direction
segment = algo.createSegment(segmentName, flowName, model.GetScenarioName(), model)
path.Segments = append(path.Segments, segment)
//when going through interdomain, either from/to the cloud or another domain, if not cloud, already handled in other tiers sections
if destElement.Type == "CLOUD" {
segmentName = destElement.PhyLocName + "-" + direction
segment = algo.createSegment(segmentName, flowName, destElement.PhyLocName, model)
path.Segments = append(path.Segments, segment)
} else if srcElement.Type == "CLOUD" {
direction = "uplink"
segmentName = srcElement.PhyLocName + "-" + direction
segment = algo.createSegment(segmentName, flowName, srcElement.PhyLocName, model)
path.Segments = append(path.Segments, segment)
}
}
return path
}
// createSegment -
func (algo *SegmentAlgorithm) createSegment(segmentName string, flowName string, elemName string, model *mod.Model) *SegAlgoSegment {
// Create new segment if it does not exist
segment := algo.SegmentMap[segmentName]
if segment == nil {
segment = new(SegAlgoSegment)
segment.Name = segmentName
// Retrieve max throughput from model using model scenario element name
maxThroughput := getMaxThroughput(elemName, model)
segment.MaxThroughput = maxThroughput
// Initialize segment-specific BW attributes from Algo config
if algo.Config.IsPercentage {
segment.MaxBwPerInactiveFlow = algo.Config.MaxBwPerInactiveFlow * maxThroughput / 100
if segment.MaxBwPerInactiveFlow < algo.Config.MaxBwPerInactiveFlowFloor {
segment.MaxBwPerInactiveFlow = algo.Config.MaxBwPerInactiveFlowFloor
}
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
segment.MinActivityThreshold = algo.Config.MinActivityThreshold * maxThroughput / 100
segment.IncrementalStep = algo.Config.IncrementalStep * maxThroughput / 100
segment.InactivityIncrementalStep = algo.Config.InactivityIncrementalStep * maxThroughput / 100
segment.TolerationThreshold = algo.Config.TolerationThreshold * maxThroughput / 100
segment.ActionUpperThreshold = algo.Config.ActionUpperThreshold * maxThroughput / 100
} else {
segment.MaxBwPerInactiveFlow = algo.Config.MaxBwPerInactiveFlow
segment.MinActivityThreshold = algo.Config.MinActivityThreshold
segment.IncrementalStep = algo.Config.IncrementalStep
segment.InactivityIncrementalStep = algo.Config.InactivityIncrementalStep
segment.TolerationThreshold = algo.Config.TolerationThreshold
segment.ActionUpperThreshold = algo.Config.ActionUpperThreshold
}
// Add segment to map
algo.SegmentMap[segmentName] = segment
}
// Add flow to segment flow map
flow := algo.FlowMap[flowName]
if flow != nil {
segment.Flows = append(segment.Flows, flow)
} else {
log.Error("Missing flow: ", flowName)
}
return segment
}
// getMetricsThroughputEntryHandler -
func (algo *SegmentAlgorithm) getMetricsThroughputEntryHandler(key string, fields map[string]string, userData interface{}) error {
subKey := strings.Split(key, ":")
for trafficFrom, throughput := range fields {
flow := algo.FlowMap[trafficFrom+":"+subKey[1]]
if flow != nil {
value, _ := strconv.ParseFloat(throughput, 64)
flow.CurrentThroughput = value
}
}
return nil
}
// reCalculateThroughputs -
func (algo *SegmentAlgorithm) reCalculateThroughputs() {
//reset every planned throughput values for every flow since they will start to populate those
for _, flow := range algo.FlowMap {
resetFlowMaxPlannedThroughput(flow)
}
//all segments determined by the scenario
for _, segment := range algo.SegmentMap {
updateMaxFairShareBwPerFlow(segment)
unusedBw, list := needToReevaluate(segment)
if list != nil {
if algo.Config.LogVerbose {
log.Info("Segment ", segment.Name, " reevaluation result - BW unused: ", unusedBw, "***Flows to evaluate***: ", printFlowNamesFromList(list))
}
recalculateSegment(segment, list, unusedBw)
if algo.Config.LogVerbose {
printFlows(segment)
}
}
}
}
// resetFlowMaxPlannedThroughput -
func resetFlowMaxPlannedThroughput(flow *SegAlgoFlow) {
flow.MaxPlannedThroughput = MAX_THROUGHPUT
flow.MaxPlannedLowerBound = MAX_THROUGHPUT
flow.MaxPlannedUpperBound = MAX_THROUGHPUT
}
// recalculateSegment -
func recalculateSegment(segment *SegAlgoSegment, flowsToEvaluate []*SegAlgoFlow, unusedBw float64) {
nbEvaluatedflowsLeft := len(flowsToEvaluate)
if segment.CurrentThroughput > segment.MaxThroughput || nbEvaluatedflowsLeft >= 1 {
//category 1 Flows
for _, flow := range flowsToEvaluate {
if flow.CurrentThroughput+segment.IncrementalStep > segment.MaxFairShareBwPerFlow {
flow.PlannedThroughput = segment.MaxFairShareBwPerFlow //category 2 or 3
} else {
if flow.CurrentThroughput <= segment.MinActivityThreshold {
flow.PlannedThroughput = segment.MaxBwPerInactiveFlow
flow.PlannedUpperBound = segment.InactivityIncrementalStep
flow.PlannedLowerBound = 0
} else {
flow.PlannedThroughput = flow.CurrentThroughput + segment.IncrementalStep
if flow.PlannedThroughput > flow.MaximumThroughput {
flow.PlannedThroughput = flow.MaximumThroughput
}
flow.PlannedUpperBound = flow.PlannedThroughput - segment.ActionUpperThreshold
flow.PlannedLowerBound = flow.PlannedUpperBound - segment.TolerationThreshold
//lower bound cannot be less than min threshold
if flow.PlannedLowerBound < segment.MinActivityThreshold {
flow.PlannedLowerBound = segment.MinActivityThreshold
}
}
nbEvaluatedflowsLeft--
if flow.PlannedThroughput != segment.MaxBwPerInactiveFlow {
unusedBw -= flow.PlannedThroughput
}
}
}
var extra float64
if nbEvaluatedflowsLeft > 0 {
//category 2 Flows
for _, flow := range flowsToEvaluate {
if flow.PlannedThroughput == segment.MaxFairShareBwPerFlow {
if flow.CurrentThroughput < segment.MaxFairShareBwPerFlow {
nbEvaluatedflowsLeft--
if nbEvaluatedflowsLeft == 0 { //allocate everything of what is left
flow.PlannedThroughput = unusedBw
if flow.PlannedThroughput > flow.MaximumThroughput {
flow.PlannedThroughput = flow.MaximumThroughput
}
flow.PlannedUpperBound = flow.PlannedThroughput
flow.PlannedLowerBound = flow.PlannedThroughput - segment.TolerationThreshold
//lower bound cannot be less than min threshold
if flow.PlannedLowerBound < segment.MinActivityThreshold {
flow.PlannedLowerBound = segment.MinActivityThreshold
}
} else {
flow.PlannedThroughput = flow.CurrentThroughput + segment.IncrementalStep
if flow.PlannedThroughput > flow.MaximumThroughput {
flow.PlannedThroughput = flow.MaximumThroughput
}
flow.PlannedUpperBound = flow.PlannedThroughput - segment.ActionUpperThreshold
flow.PlannedLowerBound = flow.PlannedUpperBound - segment.TolerationThreshold
//lower bound cannot be less than min threshold
if flow.PlannedLowerBound < segment.MinActivityThreshold {
flow.PlannedLowerBound = segment.MinActivityThreshold
}
}
unusedBw -= flow.PlannedThroughput
}
}
}
if nbEvaluatedflowsLeft > 0 {
if nbEvaluatedflowsLeft >= 1 {
extra = (unusedBw - float64(nbEvaluatedflowsLeft)*segment.MaxFairShareBwPerFlow) / float64(nbEvaluatedflowsLeft)
} else {
extra = 0
}
//category 3
for _, flow := range flowsToEvaluate {
if flow.PlannedThroughput == segment.MaxFairShareBwPerFlow && flow.CurrentThroughput >= segment.MaxFairShareBwPerFlow {
flow.PlannedThroughput = segment.MaxFairShareBwPerFlow + extra
if flow.PlannedThroughput > flow.MaximumThroughput {
flow.PlannedThroughput = flow.MaximumThroughput
}
flow.PlannedUpperBound = flow.PlannedThroughput - segment.ActionUpperThreshold
flow.PlannedLowerBound = flow.PlannedUpperBound - segment.TolerationThreshold
unusedBw -= flow.PlannedThroughput
}
}
}
}
}
//we allocate all the bw to active users and very low values to inactive ones if there is any residual
//using a minimum value that is close but not exactly 0, since we use float operations and approximation may not lead to a perfect
if unusedBw >= 1 {
for _, flow := range flowsToEvaluate {
if flow.CurrentThroughput > segment.MinActivityThreshold {
flow.PlannedThroughput = segment.MaxFairShareBwPerFlow
if flow.PlannedThroughput > flow.MaximumThroughput {
flow.PlannedThroughput = flow.MaximumThroughput
}
flow.PlannedLowerBound = 0
flow.PlannedUpperBound = 0
}
}
}
//update or not the throughput
for _, flow := range flowsToEvaluate {
if flow.PlannedThroughput < flow.MaxPlannedThroughput {
flow.MaxPlannedThroughput = flow.PlannedThroughput
flow.MaxPlannedLowerBound = flow.PlannedLowerBound
flow.MaxPlannedUpperBound = flow.PlannedUpperBound
}
}
}
// needToReevaluate - determines which Flows must be recalculated for bandwidth sharing within the segment
func needToReevaluate(segment *SegAlgoSegment) (unusedBw float64, list []*SegAlgoFlow) {
unusedBw = segment.MaxThroughput
//how many active connections that needs to be taken into account
for _, flow := range segment.Flows {
if flow.CurrentThroughput < flow.AllocatedThroughputLowerBound || flow.CurrentThroughput > flow.AllocatedThroughputUpperBound || flow.CurrentThroughput >= segment.MaxFairShareBwPerFlow {
// resetFlowMaxPlannedThroughput(flow)
list = append(list, flow)
} else {
//no need to reevalute algo one, so removing its allocated bw from the available one
unusedBw -= flow.AllocatedThroughput
}
if flow.CurrentThroughput < segment.MinActivityThreshold {
//we just re-add the bw for inactive connections
unusedBw += flow.AllocatedThroughput
}
}
return unusedBw, list
}
// updateMaxFairShareBwPerFlow -
func updateMaxFairShareBwPerFlow(segment *SegAlgoSegment) {
nbActiveConnections := 0
for _, flow := range segment.Flows {
if flow.CurrentThroughput >= segment.MinActivityThreshold {
nbActiveConnections++
}
}
if nbActiveConnections >= 1 {
segment.MaxFairShareBwPerFlow = segment.MaxThroughput / float64(nbActiveConnections)
} else {
segment.MaxFairShareBwPerFlow = MAX_THROUGHPUT
}
}
// getMaxThroughput - Retrieve max throughput from model for provided element name
func getMaxThroughput(elemName string, model *mod.Model) (maxThroughput float64) {
// Get Node
node := model.GetNode(elemName)
if node == nil {
log.Error("Error finding element: " + elemName)
return maxThroughput
}
// Get max throughput based on Node Type
if pl, ok := node.(*ceModel.PhysicalLocation); ok {
maxThroughput = float64(pl.LinkThroughput)
} else if nl, ok := node.(*ceModel.NetworkLocation); ok {
maxThroughput = float64(nl.TerminalLinkThroughput)
} else if zone, ok := node.(*ceModel.Zone); ok {
maxThroughput = float64(zone.EdgeFogThroughput)
} else if domain, ok := node.(*ceModel.Domain); ok {
maxThroughput = float64(domain.InterZoneThroughput)
} else if deployment, ok := node.(*ceModel.Deployment); ok {
maxThroughput = float64(deployment.InterDomainThroughput)
} else {
log.Error("Error casting element: " + elemName)
}
// For compatiblity reasons, set to default value if 0
if maxThroughput == 0 {
maxThroughput = DEFAULT_THROUGHPUT_LINK
}
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
return maxThroughput
}
// printFlowNamesFromList -
func printFlowNamesFromList(list []*SegAlgoFlow) string {
str := ""
for _, flow := range list {
str += flow.Name + "."
}
return str
}
// printFlows -
func printFlows(segment *SegAlgoSegment) {
log.Info("Flows on segment ", segment.Name)
for _, flow := range segment.Flows {
log.Info(printFlow(flow))
}
}
// printFlow -
func printFlow(flow *SegAlgoFlow) string {
s0 := fmt.Sprintf("%x", &flow)
s1 := flow.Name + "(" + s0 + ")"
s2 := fmt.Sprintf("%f", flow.MaximumThroughput)
s3a := fmt.Sprintf("%f", flow.AllocatedThroughput)
s4a := fmt.Sprintf("%f", flow.AllocatedThroughputLowerBound)
s5a := fmt.Sprintf("%f", flow.AllocatedThroughputUpperBound)
s3m := fmt.Sprintf("%f", flow.MaxPlannedThroughput)
s4m := fmt.Sprintf("%f", flow.MaxPlannedLowerBound)
s5m := fmt.Sprintf("%f", flow.MaxPlannedUpperBound)
s3p := fmt.Sprintf("%f", flow.PlannedThroughput)
s4p := fmt.Sprintf("%f", flow.PlannedLowerBound)
s5p := fmt.Sprintf("%f", flow.PlannedUpperBound)
s6 := fmt.Sprintf("%f", flow.CurrentThroughput)
str := s1 + ": " + "Current: " + s6 + " - Max: " + s2 + " - Allocated: " + s3a + "[" + s4a + "-" + s5a + "]" + " - MaxPlanned: " + s3m + "[" + s4m + "-" + s5m + "]" + " - Planned: " + s3p + "[" + s4p + "-" + s5p + "] "
str += printPath(flow.Path)
return str
}
// printPath -
func printPath(path *SegAlgoPath) string {
str := ""
first := true
if path != nil {
str = "Path: "
for _, segment := range path.Segments {
if first {
str += segment.Name
first = false
} else {
str += "..." + segment.Name
}
}
}
return str
}