Export: Descriptions.tdltx
X.Y.1	Descriptions
Table X.Y.1-1: Test Purpose TPD_MDD_01
	TP Id
	TPD_MDD_01

	Test Objective
	Issue a request via Postman to all domain controllers, to check the overall viability of the test network.

	Reference
	ETSI Plugtests Test Plan V1.0 (2020-11), 8.3.2

	Configuration
	TestLanArchitecture

	PICS Selection
	(MW_8040 or MW_8345)

	Initial Conditions

	//etc.
with {
 //initial textual
 perform action: "Postman has been correctly initialized earlier, by executing
 TD_POSTMAN_INIT"
 perform action: "All the Domain Controller instances up and running normally"
 perform action: "All the devices are upgraded to correct versions"
 perform action: "All basic configurations are completed (e.g., NE_id, OSPF, PCEP, etc.)"
 //then gradually formalised, e.g.
 execute DomainControllersInitialisation
 execute DevicesUpgrade
 execute BasicConfigurationsSetup
 //...
}

	Expected Behaviour

	ensure that {
 when {
 //initial textual
 perform action: "Send GET request via Postman to all domain controllers by
 executing Collection TD_MDD_01"
 //refine to first structure
 //TODO: what happens to all the parentheses?!?! -> make filter optional (or remove?)
 pm::mpi sends rGET() to X::mpi
 //refine to specific uri inline
 pm::mpi sends rGET(
 uri = "{{TD_SDN_RESTCONF_PATH}}/data/ietf-yang-library:modules-state"
) to X::mpi
 //...or define elsewhere
 pm::mpi sends rGET(
 uri = modules_state_uri
) to X::mpi
 }
 then {
 //initial textual
 perform action: "Check the response body of each request and confirm if all the
 Restconf servers are serviceable."
 perform action: "The response body of the request should contain a list of all
 YANG modules and submodules used by the Restconf server along with
 information about name and revision for each module."
 perform action: "The response body of each query should contain the specified YANG
 module along with its name and revision."
 //refinements
 // Test 1: Check the response body of the above request and confirm if the Restconf
 // server is serviceable.
 pm::mpi receives OK() from X::mpi
 // Step 2: The response body of the request should contain a list of all YANG modules
 //and submodules used by the Restconf server along with information about name and revision
 //for each module.
 //---
 //asserts can be used but probably simpler to use a specification of the expected data
 //optionally: explicit objective that can be checked
 Objective: ResponseContainsAllYanModules
 pm::mpi receives OK(
 body = JSON_instance_modules_state(
 modules_state = ?,
 modules_state = ?,
 //TODO: do we need a pattern ? / * for collections? Otherwise we need a loop instead
 //TODO: as a side note, is checking for the presence of a property
 // equivalent to that property having any value?
 modules[*] = (name = ?, revision = ?, namespace = ?)
 //...
)) from X::mpi
 //asserts can provide fine granular diagnostics though, for individual problems
 response = pm::mpi receives OK() from X::mpi
 //optionally: explicit objective that can be checked
 Objective: ResponseContainsAllYanModules
 //optionally: annotations can be used for inline information
 @Failure: "The response body of the request should contain a list of all YANG modules"
 //TODO: property access for subclasses?
 //TODO: do we have matching expressions in assertions as well
 //TODO: do we have checking of types
 assert (pm::response.body == JSON_instance_modules_state(
 modules_state = ?,
 //TODO: do we need a pattern ? / * for collections? Otherwise we need a loop instead
 //TODO: as a side note, is checking for the presence of a property
 // equivalent to that property having any value?
 modules[*] = (name = ?, revision = ?, namespace = ?)
 //
))
 on pm //may be skipped at first
 with {
 timeLabel=now
 }
 //alternatively with a loop
 //TODO: do we need counters? integrated in loops? e.g. with state to address collections?
 pm::i = 0
 repeat 5 times on pm
 //[MW_8040]
 {
 //DONE: fixed constraint with bounded loop behaviour, still not quite there
 assert (pm::response.body == JSON_instance_modules_state(
 modules_state = ?,
 //TODO: as a side note, is checking for the presence of a property
 // equivalent to that property having any value?
 modules[pm::i] = (name = ?, revision = ?, namespace = ?)
 //
))
 on pm //may be skipped at first
 //DONE: handle undefined return types -> a bit of a hack, assuming they are the same
 pm::i = (pm::i + 1)
 }
 }
}

Table X.Y.1-2: Test Purpose TPD_MSP_01
	TP Id
	TPD_MSP_01

	Test Objective
	Create the specified L2 data services over all available domains. The TGA confirms that data start flowing. The traffic on the inter-domain links is classified based on S- VLAN only.

	Reference
	ETSI Plugtests Test Plan V1.0 (2020-11), 8.5.2

	Configuration
	TestLanArchitecture

	PICS Selection
	(MW_8040 or MW_8345)

	Initial Conditions

	//etc.
with {
 //initial textual
 perform action: "Postman has been correctly initialized earlier, by executing TD_POSTMAN_INIT"
 perform action: "The Domain Controller instance is up and running normally"
 perform action: "All the devices are upgraded to correct versions"
 perform action: "All basic configurations are completed (e.g., NE_id, OSPF, PCEP, etc.)"
 perform action: "All Restconf servers are serviceable."
 perform action: "If TD_SSP_01 has been run before TD_ MSP_01, all Domain Controllers and
 microwave units should be reset to the state they were before executing
 TD_SSP_01"
 //then gradually formalised, e.g.
 execute DomainControllerInitialisation
 execute DomainControllerInitialisation
 execute DevicesUpgrade
 execute BasicConfigurationsSetup
 if [TD_SSP_01_Completed] {
 execute ResetDomainControllers
 execute ResetMicrowaveUnits
 }
 //...
}

	Expected Behaviour

	ensure that {
 when {
 //initial textual
 perform action: "Send POST request via Postman to all domain controllers
 by executing Collection TD_ SSP_01"
// //refine to first structure
// pm::mpi sends rPOST() to X::mpi
// //refine to specific body (or define inline)
// pm::mpi sends rPOST(body = JSON_instance) to X::mpi
//
// //provide additional parameter overrides
// pm::mpi sends rPOST(
// body = JSON_instance (
// services[0].adminStatus = "up",
// //..
// //TODO: check constraints
// services[0].ports[1].accessNodeId = node1
// //..
//)
//)
// to X::mpi //....
 }
 then {
 //initial textual
 perform action: "Check the TGA if the data start flowing properly."
// pm::mpi receives OK() from X::mpi
// pm::mpi receives OK(body = JSON_instance) from X::mpi
// pm::mpi receives OK(
// body = JSON_instance(
// //..
// services[2] = omit,
// //...
// services[3].ports[1] = omit
//)
//)
// from X::mpi
// //first response definition, then refined, also with overrides
// //!TODO: Why are comments before receive message not OK?
// //... refine further
 }
}

Table X.Y.1-3: Test Purpose TPD_MSP_04
	TP Id
	TPD_MSP_04

	Test Objective
	The Ethernet service information is requested from all the DCs under test in TD_MSP_03. The received information is checked to correctly not list the newly deleted services anymore.

	Reference
	ETSI Plugtests Test Plan V1.0 (2020-11), 8.5.2

	Configuration
	TestLanArchitecture

	PICS Selection
	(MW_8040 or MW_8345)

	Initial Conditions

	//etc.
with {
 //initial textual
 perform action: "Postman has been correctly initialized earlier, by executing TD_POSTMAN_INIT"
 perform action: "All the Domain Controller instances are up and running normally"
 perform action: "All the devices are upgraded to correct versions"
 perform action: "All basic configurations are completed (e.g., NE_id, OSPF, PCEP, etc.)"
 perform action: "All Restconf servers are serviceable."
 perform action: "All L2 data services are successfully created."
 //then gradually formalised, e.g.
 execute DomainControllersInitialisation
 execute DevicesUpgrade
 execute BasicConfigurationsSetup
 execute L2DataServicesCreation
 //...
}

	Expected Behaviour

	ensure that {
 when {
 //initial textual
 perform action: "Send GET request via Postman to
 all domain controllers by executing
 Collection TD_MSP_04"
 //refine to first structure
 pm::mpi sends rGET() to X::mpi
 //refine to specific body (or define inline)
 pm::mpi sends rGET(body = JSON_instance) to X::mpi
 //provide additional parameter overrides
 pm::mpi sends rGET(
 body = JSON_instance (
 services[0].adminStatus = "up" {JSON_String},
 //..
 //DONE: check constraints
 services[0].ports[1].accessNodeId = node1
 //..
)
)
 to X::mpi //....
 }
 then {
 //initial textual
 perform action: "The response body should no longer contain
 information about the L2 service deleted in TD_MSP_03"
 //basic response definition
 pm::mpi receives OK() from X::mpi
 //refined with reference to body definition
 pm::mpi receives OK(body = JSON_instance) from X::mpi
 //refined with inline overrides
 pm::mpi receives OK(
 body = JSON_instance(
 //..
 //TODO: does an optional collection member imply entire collection is ommitted?
 // or also individual items?
 //TODO: does special value use conform to everything?
 services[2] = omit,
 //...
 services[3].ports[1] = omit
)
)
 from X::mpi
 //... refine further
 }
}

