# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from pyspark.sql import SparkSession from pyspark.sql.types import StructType, StructField, StringType, DoubleType from pyspark.sql.functions import from_json, col from common.tools.kafka.Variables import KafkaConfig, KafkaTopic LOGGER = logging.getLogger(__name__) def DefiningSparkSession(): # Create a Spark session with specific spark verions (3.5.0) return SparkSession.builder \ .appName("Analytics") \ .config("spark.jars.packages", "org.apache.spark:spark-sql-kafka-0-10_2.12:3.5.0") \ .getOrCreate() def SettingKafkaConsumerParams(): # TODO: create get_kafka_consumer() in common with inputs (bootstrap server, subscribe, startingOffset and failOnDataLoss with default values) return { # "kafka.bootstrap.servers": '127.0.0.1:9092', "kafka.bootstrap.servers": KafkaConfig.get_kafka_address(), "subscribe" : KafkaTopic.VALUE.value, "startingOffsets" : 'latest', "failOnDataLoss" : 'false' # Optional: Set to "true" to fail the query on data loss } def DefiningRequestSchema(): return StructType([ StructField("time_stamp" , StringType() , True), StructField("kpi_id" , StringType() , True), StructField("kpi_value" , DoubleType() , True) ]) def SettingKafkaProducerParams(): return { "kafka.bootstrap.servers" : KafkaConfig.get_kafka_address(), "topic" : KafkaTopic.ANALYTICS_RESPONSE.value } def SparkStreamer(kpi_list): """ Method to perform Spark operation Kafka stream. NOTE: Kafka topic to be processesd should have atleast one row before initiating the spark session. """ kafka_producer_params = SettingKafkaConsumerParams() # Define the Kafka producer parameters kafka_consumer_params = SettingKafkaConsumerParams() # Define the Kafka consumer parameters schema = DefiningRequestSchema() # Define the schema for the incoming JSON data spark = DefiningSparkSession() # Define the spark session with app name and spark version try: # Read data from Kafka raw_stream_data = spark \ .readStream \ .format("kafka") \ .options(**kafka_consumer_params) \ .load() # Convert the value column from Kafka to a string stream_data = raw_stream_data.selectExpr("CAST(value AS STRING)") # Parse the JSON string into a DataFrame with the defined schema parsed_stream_data = stream_data.withColumn("parsed_value", from_json(col("value"), schema)) # Select the parsed fields final_stream_data = parsed_stream_data.select("parsed_value.*") # Filter the stream to only include rows where the kpi_id is in the kpi_list filtered_stream_data = final_stream_data.filter(col("kpi_id").isin(kpi_list)) query = filtered_stream_data \ .selectExpr("CAST(kpi_id AS STRING) AS key", "to_json(struct(*)) AS value") \ .writeStream \ .format("kafka") \ .option("kafka.bootstrap.servers", KafkaConfig.get_kafka_address()) \ .option("topic", KafkaTopic.ANALYTICS_RESPONSE.value) \ .option("checkpointLocation", "/home/tfs/sparkcheckpoint") \ .outputMode("append") # Start the Spark streaming query and write the output to the Kafka topic # query = filtered_stream_data \ # .selectExpr("CAST(kpi_id AS STRING) AS key", "to_json(struct(*)) AS value") \ # .writeStream \ # .format("kafka") \ # .option(**kafka_producer_params) \ # .option("checkpointLocation", "sparkcheckpoint") \ # .outputMode("append") \ # .start() # Start the Spark streaming query # query = filtered_stream_data \ # .writeStream \ # .outputMode("append") \ # .format("console") # You can change this to other output modes or sinks # Start the query execution query.start().awaitTermination() except Exception as e: print("Error in Spark streaming process: {:}".format(e)) LOGGER.debug("Error in Spark streaming process: {:}".format(e)) finally: spark.stop()