# Copyright 2022-2024 ETSI SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import json
import logging
import threading

import pytz
from common.tools.service.GenericGrpcService import GenericGrpcService
from common.tools.kafka.Variables import KafkaConfig, KafkaTopic
from confluent_kafka import Consumer as KafkaConsumer
from confluent_kafka import KafkaError
from common.Constants import ServiceNameEnum
from common.Settings import get_service_port_grpc
from threading import Thread, Event
from analytics.backend.service.Streamer import DaskStreamer
from common.proto.analytics_frontend_pb2 import Analyzer
from datetime import datetime, timedelta


LOGGER = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format=' %(levelname)s - %(message)s')

class AnalyticsBackendService(GenericGrpcService):
    """
    Class listens for ...
    """
    def __init__(self, cls_name : str = __name__) -> None:
        LOGGER.info('Init AnalyticsBackendService')
        port = get_service_port_grpc(ServiceNameEnum.ANALYTICSBACKEND)
        super().__init__(port, cls_name=cls_name)
        self.active_streamers = {}
        self.kafka_consumer = KafkaConsumer({'bootstrap.servers' : KafkaConfig.get_kafka_address(),
                                            'group.id'           : 'analytics-frontend',
                                            'auto.offset.reset'  : 'latest'})

    def install_servicers(self):
        threading.Thread(
            target=self.RequestListener,
            args=()
        ).start()

    def RequestListener(self):
        """
        listener for requests on Kafka topic.
        """
        LOGGER.info("Request Listener is initiated ...")
        # print      ("Request Listener is initiated ...")
        consumer = self.kafka_consumer
        consumer.subscribe([KafkaTopic.ANALYTICS_REQUEST.value])
        while True:
            receive_msg = consumer.poll(2.0)
            if receive_msg is None:
                continue
            elif receive_msg.error():
                if receive_msg.error().code() == KafkaError._PARTITION_EOF:
                    continue
                else:
                    LOGGER.error("Consumer error: {:}".format(receive_msg.error()))
                    # print       ("Consumer error: {:}".format(receive_msg.error()))
                    break
            try:
                analyzer      = json.loads(receive_msg.value().decode('utf-8'))
                analyzer_uuid = receive_msg.key().decode('utf-8')
                LOGGER.info('Recevied Analyzer: {:} - {:}'.format(analyzer_uuid, analyzer))
                # print       ('Recevied Analyzer: {:} - {:}'.format(analyzer_uuid, analyzer))

                if analyzer["algo_name"] is None and analyzer["oper_mode"] is None:
                    self.StopStreamer(analyzer_uuid)
                else:
                    self.StartStreamer(analyzer_uuid, analyzer)
            except Exception as e:
                LOGGER.warning("Unable to consume message from topic: {:}. ERROR: {:}".format(KafkaTopic.ANALYTICS_REQUEST.value, e))


    def StartStreamer(self, analyzer_uuid : str, analyzer : json):
        """
        Start the DaskStreamer with the given parameters.
        """
        if analyzer_uuid in self.active_streamers:
            LOGGER.warning("Dask Streamer already running with the given analyzer_uuid: {:}".format(analyzer_uuid))
            return False
        try:
            streamer = DaskStreamer(
                analyzer_uuid,
                analyzer['input_kpis' ],
                analyzer['output_kpis'],
                analyzer['thresholds' ],
                analyzer['batch_size' ],
                analyzer['window_size'],
            )
            streamer.start()
            logging.info(f"Streamer started with analyzer Id: {analyzer_uuid}")

            # Stop the streamer after the given duration
            if analyzer['duration'] is not None:
                def stop_after_duration():
                    time.sleep(analyzer['duration'])
                    logging.info(f"Stopping streamer with analyzer: {analyzer_uuid}")
                    streamer.stop()

                duration_thread = threading.Thread(target=stop_after_duration, daemon=True)
                duration_thread.start()

            self.active_streamers[analyzer_uuid] = streamer
            LOGGER.info("Dask Streamer started.")
            return True
        except Exception as e:
            LOGGER.error("Failed to start Dask Streamer. ERROR: {:}".format(e))
            return False

    def StopStreamer(self, analyzer_uuid : str):
        """
        Stop the DaskStreamer with the given analyzer_uuid.
        """
        try:
            if analyzer_uuid not in self.active_streamers:
                LOGGER.warning("Dask Streamer not found with the given analyzer_uuid: {:}".format(analyzer_uuid))
                return False
            LOGGER.info(f"Stopping streamer with key: {analyzer_uuid}")
            streamer = self.active_streamers[analyzer_uuid]
            streamer.stop()
            streamer.join()
            del self.active_streamers[analyzer_uuid]
            LOGGER.info(f"Streamer with analyzer_uuid '{analyzer_uuid}' has been stopped.")
            return True
        except Exception as e:
            LOGGER.error("Failed to stop Dask Streamer. ERROR: {:}".format(e))
            return False