# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging, pandas from typing import List, Optional LOGGER = logging.getLogger(__name__) class InMemoryTimeSeriesDatabase: def __init__(self) -> None: self._data = pandas.DataFrame(columns=['timestamp', 'kpi_uuid', 'value']) def filter( self, kpi_uuids : List[str] = [], start_timestamp : Optional[float] = None, end_timestamp : Optional[float] = None ) -> pandas.DataFrame: data = self._data if len(kpi_uuids) > 0: data = data[data.kpi_uuid.isin(kpi_uuids)] if start_timestamp is not None: start_datetime = pandas.to_datetime(start_timestamp, unit='s') data = data[data.timestamp >= start_datetime] if end_timestamp is not None: end_datetime = pandas.to_datetime(end_timestamp, unit='s') data = data[data.timestamp <= end_datetime] return data