# Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import threading import time from typing import Tuple, Any import grpc import logging from confluent_kafka import Consumer as KafkaConsumer from common.proto.context_pb2 import Empty from monitoring.service.NameMapping import NameMapping from confluent_kafka import Producer as KafkaProducer from confluent_kafka import KafkaException from confluent_kafka import KafkaError from common.proto.telemetry_frontend_pb2 import CollectorId, Collector, CollectorFilter, CollectorList from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method from common.proto.telemetry_frontend_pb2_grpc import TelemetryFrontendServiceServicer from telemetry.database.TelemetryModel import Collector as CollectorModel from telemetry.database.managementDB import managementDB LOGGER = logging.getLogger(__name__) METRICS_POOL = MetricsPool('Monitoring', 'TelemetryFrontend') KAFKA_SERVER_IP = '127.0.0.1:9092' ACTIVE_COLLECTORS = [] KAFKA_TOPICS = {'request' : 'topic_request', 'response': 'topic_response'} class TelemetryFrontendServiceServicerImpl(TelemetryFrontendServiceServicer): def __init__(self, name_mapping : NameMapping): LOGGER.info('Init TelemetryFrontendService') self.managementDBobj = managementDB() self.kafka_producer = KafkaProducer({'bootstrap.servers': KAFKA_SERVER_IP,}) self.kafka_consumer = KafkaConsumer({'bootstrap.servers' : KAFKA_SERVER_IP, 'group.id' : 'frontend', 'auto.offset.reset' : 'latest'}) def add_collector_to_db(self, request: Collector ): # type: ignore try: # Create a new Collector instance collector_to_insert = CollectorModel() collector_to_insert.collector_id = request.collector_id.collector_id.uuid collector_to_insert.kpi_id = request.kpi_id.kpi_id.uuid # collector_to_insert.collector_decription= request.collector collector_to_insert.sampling_duration_s = request.duration_s collector_to_insert.sampling_interval_s = request.interval_s collector_to_insert.start_timestamp = time.time() collector_to_insert.end_timestamp = time.time() managementDB.add_row_to_db(collector_to_insert) except Exception as e: LOGGER.info("Unable to create collectorModel class object. {:}".format(e)) # @safe_and_metered_rpc_method(METRICS_POOL, LOGGER) def StartCollector(self, request : Collector, grpc_context: grpc.ServicerContext # type: ignore ) -> CollectorId: # type: ignore # push info to frontend db LOGGER.info ("gRPC message: {:}".format(request)) response = CollectorId() _collector_id = str(request.collector_id.collector_id.uuid) _collector_kpi_id = str(request.kpi_id.kpi_id.uuid) _collector_duration = int(request.duration_s) _collector_interval = int(request.interval_s) # pushing Collector to DB self.add_collector_to_db(request) self.publish_to_kafka_request_topic(_collector_id, _collector_kpi_id, _collector_duration, _collector_interval) # self.run_publish_to_kafka_request_topic(_collector_id, _collector_kpi_id, _collector_duration, _collector_interval) response.collector_id.uuid = request.collector_id.collector_id.uuid # type: ignore return response def run_publish_to_kafka_request_topic(self, msg_key: str, kpi: str, duration : int, interval: int): # Add threading.Thread() response to dictonary and call start() in the next statement threading.Thread(target=self.publish_to_kafka_request_topic, args=(msg_key, kpi, duration, interval)).start() def publish_to_kafka_request_topic(self, collector_id: str, kpi: str, duration : int, interval: int ): """ Method to generate collector request to Kafka topic. """ # time.sleep(5) # producer_configs = { # 'bootstrap.servers': KAFKA_SERVER_IP, # } # topic_request = "topic_request" msg_value : Tuple [str, int, int] = (kpi, duration, interval) # print ("Request generated: ", "Colletcor Id: ", collector_id, \ # ", \nKPI: ", kpi, ", Duration: ", duration, ", Interval: ", interval) # producerObj = KafkaProducer(producer_configs) self.kafka_producer.produce(KAFKA_TOPICS['request'], key=collector_id, value= str(msg_value), callback=self.delivery_callback) # producerObj.produce(KAFKA_TOPICS['request'], key=collector_id, value= str(msg_value), callback=self.delivery_callback) LOGGER.info("Collector Request Generated: {:}, {:}, {:}, {:}".format(collector_id, kpi, duration, interval)) # producerObj.produce(topic_request, key=collector_id, value= str(msg_value), callback=self.delivery_callback) ACTIVE_COLLECTORS.append(collector_id) self.kafka_producer.flush() def run_kafka_listener(self): # print ("--- STARTED: run_kafka_listener ---") threading.Thread(target=self.kafka_listener).start() return True def kafka_listener(self): """ listener for response on Kafka topic. """ # # print ("--- STARTED: kafka_listener ---") # conusmer_configs = { # 'bootstrap.servers' : KAFKA_SERVER_IP, # 'group.id' : 'frontend', # 'auto.offset.reset' : 'latest' # } # # topic_response = "topic_response" # consumerObj = KafkaConsumer(conusmer_configs) self.kafka_consumer.subscribe([KAFKA_TOPICS['response']]) # print (time.time()) while True: receive_msg = self.kafka_consumer.poll(2.0) if receive_msg is None: # print (" - Telemetry frontend listening on Kafka Topic: ", KAFKA_TOPICS['response']) # added for debugging purposes continue elif receive_msg.error(): if receive_msg.error().code() == KafkaError._PARTITION_EOF: continue else: print("Consumer error: {}".format(receive_msg.error())) break try: collector_id = receive_msg.key().decode('utf-8') if collector_id in ACTIVE_COLLECTORS: (kpi_id, kpi_value) = ast.literal_eval(receive_msg.value().decode('utf-8')) self.process_response(collector_id, kpi_id, kpi_value) else: print(f"collector id does not match.\nRespone ID: '{collector_id}' --- Active IDs: '{ACTIVE_COLLECTORS}' ") except Exception as e: print(f"No message key found: {str(e)}") continue # return None def process_response(self, collector_id: str, kpi_id: str, kpi_value: Any): if kpi_id == "-1" and kpi_value == -1: # LOGGER.info("Sucessfully terminated Collector: {:}".format(collector_id)) print ("Sucessfully terminated Collector: ", collector_id) else: print ("Frontend-Received values Collector Id:", collector_id, "-KPI:", kpi_id, "-VALUE:", kpi_value) @safe_and_metered_rpc_method(METRICS_POOL, LOGGER) def delivery_callback(self, err, msg): """ Callback function to handle message delivery status. Args: err (KafkaError): Kafka error object. msg (Message): Kafka message object. """ if err: print(f'Message delivery failed: {err}') else: print(f'Message delivered to topic {msg.topic()}') @safe_and_metered_rpc_method(METRICS_POOL, LOGGER) def StopCollector(self, request : CollectorId, grpc_context: grpc.ServicerContext # type: ignore ) -> Empty: # type: ignore LOGGER.info ("gRPC message: {:}".format(request)) _collector_id = request.collector_id.uuid self.publish_to_kafka_request_topic(_collector_id, "", -1, -1) return Empty() @safe_and_metered_rpc_method(METRICS_POOL, LOGGER) def SelectCollectors(self, request : CollectorFilter, contextgrpc_context: grpc.ServicerContext # type: ignore ) -> CollectorList: # type: ignore LOGGER.info("gRPC message: {:}".format(request)) response = CollectorList() filter_to_apply = dict() filter_to_apply['kpi_id'] = request.kpi_id[0].kpi_id.uuid # filter_to_apply['duration_s'] = request.duration_s[0] try: rows = self.managementDBobj.select_with_filter(CollectorModel, **filter_to_apply) except Exception as e: LOGGER.info('Unable to apply filter on kpi descriptor. {:}'.format(e)) try: if len(rows) != 0: for row in rows: collector_obj = Collector() collector_obj.collector_id.collector_id.uuid = row.collector_id response.collector_list.append(collector_obj) return response except Exception as e: LOGGER.info('Unable to process response {:}'.format(e))