//////////////////////////////////////////////////////////////////////////////////////// /** * # Copyright 2022 Centre Tecnolňgic de Telecomunicacions de Catalunya (CTTC/CERCA) www.cttc.es * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * Author: CTTC/CERCA PONS RU Ricardo Martínez (ricardo.martinez@cttc.es) */ //////////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pathComp_log.h" #include "pathComp_tools.h" #include "pathComp_sp.h" // Global Variables struct map_nodes_t* mapNodes; struct graph_t* graph; struct contextSet_t* contextSet; /////////////////////////////////////////////////////////////////////////////////// /** * @file pathComp_sp.c * @brief Excecution Dijkstra algorithm * * @param srcMapIndex * @param dstMapIndex * @param g * @param s * * @author Ricardo Martínez * @date 2022 */ ///////////////////////////////////////////////////////////////////////////////////////// void dijkstra(gint srcMapIndex, gint dstMapIndex, struct graph_t* g, struct service_t* s) { g_assert(s); g_assert(g); // Set params into mapNodes related to the source nodes of the request mapNodes->map[srcMapIndex].distance = 0.0; mapNodes->map[srcMapIndex].latency = 0.0; mapNodes->map[srcMapIndex].avaiBandwidth = 0.0; // Initialize the set Q and S GList* S = NULL, *Q = NULL; gint indexVertice = -1; // Add the source into the Q struct nodeItem_t* nodeItem = g_malloc0(sizeof(struct nodeItem_t)); if (nodeItem == NULL) { DEBUG_PC("memory allocation failed\n"); exit(-1); } // initialize some nodeItem attributes nodeItem->distance = 0.0; nodeItem->latency = 0.0; duplicate_node_id(&mapNodes->map[srcMapIndex].verticeId, &nodeItem->node); Q = g_list_insert_sorted(Q, nodeItem, sort_by_distance); while (g_list_length(Q) > 0) { //Extract from Q set GList* listnode = g_list_first(Q); struct nodeItem_t* node = (struct nodeItem_t*)(listnode->data); Q = g_list_remove(Q, node); DEBUG_PC("Q length: %d", g_list_length(Q)); DEBUG_PC("DeviceId: %s", node->node.nodeId); // visit all the links from u within the graph indexVertice = graph_vertice_lookup(node->node.nodeId, g); g_assert(indexVertice >= 0); // Check the targeted vertices from u for (gint i = 0; i < g->vertices[indexVertice].numTargetedVertices; i++) { gint done = check_link(node, indexVertice, i, g, s, &S, &Q, mapNodes); (void)done; } // Add node into the S Set S = g_list_append(S, node); //DEBUG_PC ("S length: %d", g_list_length (S)); } g_list_free_full(S, g_free); g_list_free_full(Q, g_free); return; } /////////////////////////////////////////////////////////////////////////////////// /** * @file pathComp_sp.c * @brief handling the Dijkstra algorithm * * @param pred * @param g * @param s * * @author Ricardo Martínez * @date 2022 */ ///////////////////////////////////////////////////////////////////////////////////////// gint computation(struct pred_t* pred, struct graph_t* g, struct service_t* s) { g_assert(pred); g_assert(g); g_assert(s); // Check the both ingress src and dst endpoints are in the graph gint srcMapIndex = get_map_index_by_nodeId(s->service_endpoints_id[0].device_uuid, mapNodes); if (srcMapIndex == -1) { DEBUG_PC("ingress DeviceId: %s NOT in the graph", s->service_endpoints_id[0].device_uuid); return -1; } gint dstMapIndex = get_map_index_by_nodeId(s->service_endpoints_id[1].device_uuid, mapNodes); if (dstMapIndex == -1) { DEBUG_PC("egress DeviceId: %s NOT in the graph", s->service_endpoints_id[1].device_uuid); return -1; } // Compute the shortest path dijkstra(srcMapIndex, dstMapIndex, g, s); // Check that a feasible solution in term of latency and bandwidth is found gint map_dstIndex = get_map_index_by_nodeId(s->service_endpoints_id[1].device_uuid, mapNodes); struct map_t* dest_map = &mapNodes->map[map_dstIndex]; if (!(dest_map->distance < INFINITY_COST)) { DEBUG_PC("destination: %s NOT reachable", s->service_endpoints_id[1].device_uuid); return -1; } DEBUG_PC("AvailBw @ %s is %f", dest_map->verticeId.nodeId, dest_map->avaiBandwidth); // Check that the computed available bandwidth is larger than 0.0 if (dest_map->avaiBandwidth <= (gfloat)0.0) { DEBUG_PC("dst: %s NOT REACHABLE", s->service_endpoints_id[1].device_uuid); return -1; } DEBUG_PC("dst: %s REACHABLE", s->service_endpoints_id[1].device_uuid); // Handle predecessors build_predecessors(pred, s, mapNodes); return 1; } //////////////////////////////////////////////////////////////////////////////////////// /** * @file pathComp_sp.c * @brief CSPF algorithm execution * * @param s * @param path * @param g * * @author Ricardo Martínez * @date 2022 */ ///////////////////////////////////////////////////////////////////////////////////////// void computation_shortest_path(struct service_t* s, struct compRouteOutput_t* path, struct graph_t* g) { g_assert(s); g_assert(path); g_assert(g); // create map of devices / nodes to handle the path computation using the context mapNodes = create_map_node(); build_map_node(mapNodes, g); // predecessors to store the computed path struct pred_t* predecessors = create_predecessors(); struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[0]); struct service_endpoints_id_t* eEp = &(s->service_endpoints_id[1]); // SP computation gint done = computation(predecessors, g, s); if (done == -1) { DEBUG_PC("NO PATH FOUND %s[%s] ---> %s[%s]", iEp->device_uuid, iEp->endpoint_uuid, eEp->device_uuid, eEp->endpoint_uuid); comp_route_connection_issue_handler(path, s); g_free(mapNodes); g_free(predecessors); return; } // Construct the path from the computed predecessors struct compRouteOutputItem_t* p = create_path_item(); //print_predecessors(predecessors); build_path(p, predecessors, s); //DEBUG_PC ("Path is constructed"); gint indexDest = get_map_index_by_nodeId(eEp->device_uuid, mapNodes); struct map_t* dst_map = &mapNodes->map[indexDest]; // Get the delay and cost memcpy(&p->cost, &dst_map->distance, sizeof(gdouble)); memcpy(&p->availCap, &dst_map->avaiBandwidth, sizeof(dst_map->avaiBandwidth)); memcpy(&p->delay, &dst_map->latency, sizeof(mapNodes->map[indexDest].latency)); DEBUG_PC("Computed Path Avail Bw: %f, Path Cost: %f, latency: %f", p->availCap, p->cost, p->delay); print_path(p); gboolean feasibleRoute = check_computed_path_feasability(s, p); if (feasibleRoute == TRUE) { DEBUG_PC("SP Feasible"); print_path(p); path->numPaths++; // Copy the serviceId DEBUG_PC("contextId: %s", s->serviceId.contextId); copy_service_id(&path->serviceId, &s->serviceId); // copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services) for (gint i = 0; i < s->num_service_endpoints_id; i++) { struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[i]); struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[i]); copy_service_endpoint_id(oEp, iEp); } path->num_service_endpoints_id = s->num_service_endpoints_id; // Copy the computed path struct path_t* targetedPath = &(path->paths[path->numPaths - 1]); duplicate_path_t(p, targetedPath); print_path_t(targetedPath); g_free(predecessors); g_free(p); g_free(mapNodes); return; } DEBUG_PC("SP FAILED!!!"); comp_route_connection_issue_handler(path, s); return; } //////////////////////////////////////////////////////////////////////////////////////// /** * @file pathComp_sp.c * @brief Iterates over the list of network connectivity service requests * to compute their own paths fulfilling the constraints * * @param outputList * * @author Ricardo Martínez * @date 2022 */ void sp_execution_services(struct compRouteOutputList_t* oPathList) { g_assert(oPathList); g_assert(contextSet); g_assert(serviceList); DEBUG_PC("----- Starting the SP Computation ------"); for (gint i = 0; i < serviceList->numServiceList; i++) { struct service_t* service = &(serviceList->services[i]); DEBUG_PC("Starting the Computation for ServiceId: %s [ContextId: %s]", service->serviceId.service_uuid, service->serviceId.contextId); struct compRouteOutput_t* pathService = &(oPathList->compRouteConnection[i]); // check endpoints of the service are different (PE devices/nodes are different) if (same_src_dst_pe_nodeid(service) == 0) { DEBUG_PC("PEs are the same... no path computation"); comp_route_connection_issue_handler(pathService, service); oPathList->numCompRouteConnList++; continue; } // get the graph associated to the contextId in the contextSet, if no then error struct graph_t* g = get_graph_by_contextId(contextSet, service->serviceId.contextId); if (g == NULL) { DEBUG_PC("The targeted contextId is NOT in the ContextSet ... then NO graph"); comp_route_connection_issue_handler(pathService, service); oPathList->numCompRouteConnList++; continue; } computation_shortest_path(service, pathService, g); oPathList->numCompRouteConnList++; // for each network connectivity service, a single computed path (out of the KCSP) is retuned // If path is found, then the selected resources must be pre-assigned into the context information if (pathService->noPathIssue == NO_PATH_CONS_ISSUE) { continue; } struct path_t* path = &(pathService->paths[pathService->numPaths - 1]); allocate_graph_resources(path, service, g); allocate_graph_reverse_resources(path, service, g); print_graph(g); } return; } //////////////////////////////////////////////////////////////////////////////////////// /** * @file pathComp_sp.c * @brief handles the path computation for the constrained shortest path * * @param compRouteOutput * * @author Ricardo Martínez * @date 2022 */ ///////////////////////////////////////////////////////////////////////////////////////// gint pathComp_sp_alg(struct compRouteOutputList_t* routeConnList) { g_assert(routeConnList); gint numSuccesPathComp = 0, numPathCompIntents = 0; DEBUG_PC("================================================================"); DEBUG_PC("=========================== SP ========================="); DEBUG_PC("================================================================"); // increase the number of Path Comp. Intents numPathCompIntents++; gint http_code = HTTP_CODE_OK; // timestamp t0 struct timeval t0; gettimeofday(&t0, NULL); // Allocate memory for the context contextSet = create_contextSet(); // Build up the contextSet (>= 1) build_contextSet(contextSet); print_contextSet(contextSet); #if 1 //Triggering the path computation for each specific network connectivity service sp_execution_services(routeConnList); // -- timestamp t1 struct timeval t1, delta; gettimeofday(&t1, NULL); delta.tv_sec = t1.tv_sec - t0.tv_sec; delta.tv_usec = t1.tv_usec - t0.tv_usec; delta = tv_adjust(delta); numSuccesPathComp++; update_stats_path_comp(routeConnList, delta, numSuccesPathComp, numPathCompIntents); print_path_connection_list(routeConnList); #endif g_free(contextSet); return http_code; }