# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time, json
from typing import Dict
import logging
import threading
from common.tools.kafka.Variables import KafkaTopic
from analytics.backend.service.AnalyticsBackendService import AnalyticsBackendService
from analytics.backend.tests.messages import get_kpi_id_list, get_operation_list, get_threshold_dict
from .messages import create_analyzer

LOGGER = logging.getLogger(__name__)


###########################
# Tests Implementation of Telemetry Backend
###########################

# --- "test_validate_kafka_topics" should be run before the functionality tests ---
def test_validate_kafka_topics():
    LOGGER.debug(" >>> test_validate_kafka_topics: START <<< ")
    response = KafkaTopic.create_all_topics()
    assert isinstance(response, bool)

def test_StartSparkStreamer():
    LOGGER.debug(" >>> test_StartSparkStreamer: START <<< ")
    analyzer_obj = create_analyzer()
    analyzer_uuid = analyzer_obj.analyzer_id.analyzer_id.uuid
    analyzer_to_generate : Dict = {
        "algo_name"       : analyzer_obj.algorithm_name,
        "input_kpis"      : [k.kpi_id.uuid for k in analyzer_obj.input_kpi_ids],
        "output_kpis"     : [k.kpi_id.uuid for k in analyzer_obj.output_kpi_ids],
        "oper_mode"       : analyzer_obj.operation_mode,
        "thresholds"      : json.loads(analyzer_obj.parameters["thresholds"]),
        "window_size"     : analyzer_obj.parameters["window_size"],
        "window_slider"   : analyzer_obj.parameters["window_slider"],
        # "store_aggregate" : analyzer_obj.parameters["store_aggregate"] 
    }
    AnalyticsBackendServiceObj = AnalyticsBackendService()
    response = AnalyticsBackendServiceObj.StartSparkStreamer(analyzer_uuid, analyzer_to_generate)
    assert isinstance(response, bool)

# def test_StartRequestListener():
#     LOGGER.info('test_RunRequestListener')
#     AnalyticsBackendServiceObj = AnalyticsBackendService()
#     response = AnalyticsBackendServiceObj.StartRequestListener() # response is Tuple (thread, stop_event)
#     LOGGER.debug(str(response)) 
#     assert isinstance(response, tuple)

# To test START and STOP communication together
def test_StopRequestListener():
    LOGGER.info('test_RunRequestListener')
    LOGGER.info('Initiating StartRequestListener...')
    AnalyticsBackendServiceObj = AnalyticsBackendService()
    response_thread = AnalyticsBackendServiceObj.StartRequestListener() # response is Tuple (thread, stop_event)
    # LOGGER.debug(str(response_thread))
    time.sleep(10)
    LOGGER.info('Initiating StopRequestListener...')
    AnalyticsBackendServiceObj = AnalyticsBackendService()
    response = AnalyticsBackendServiceObj.StopRequestListener(response_thread)
    LOGGER.debug(str(response)) 
    assert isinstance(response, bool)

# To independently tests the SparkListener functionality
# def test_SparkListener():
#     LOGGER.info('test_RunRequestListener')
#     AnalyticsBackendServiceObj = AnalyticsBackendService()
#     response = AnalyticsBackendServiceObj.RunSparkStreamer(
#         get_kpi_id_list(), get_operation_list(), get_threshold_dict()
#         )
#     LOGGER.debug(str(response))
#     assert isinstance(response, bool)