import os, grpc, logging from sklearn.cluster import DBSCAN from common.rpc_method_wrapper.Decorator import create_metrics, safe_and_metered_rpc_method from dbscanserving.proto.dbscanserving_pb2 import DetectionRequest, DetectionResponse from dbscanserving.proto.dbscanserving_pb2_grpc import DetectorServicer LOGGER = logging.getLogger(__name__) SERVICE_NAME = 'DbscanServing' METHOD_NAMES = ['Detect'] METRICS = create_metrics(SERVICE_NAME, METHOD_NAMES) class DbscanServiceServicerImpl(DetectorServicer): def __init__(self): LOGGER.debug('Creating Servicer...') LOGGER.debug('Servicer Created') @safe_and_metered_rpc_method(METRICS, LOGGER) def Detect(self, request : DetectionRequest, context : grpc.ServicerContext) -> DetectionResponse: if request.num_samples != len(request.samples): context.set_details("The sample dimension declared does not match with the number of samples received.") LOGGER.debug(f"The sample dimension declared does not match with the number of samples received. Declared: {request.num_samples} - Received: {len(request.samples)}") context.set_code(grpc.StatusCode.INVALID_ARGUMENT) return DetectionResponse() # TODO: implement the validation of the features dimension clusters = DBSCAN(eps=request.eps, min_samples=request.min_samples).fit_predict([[x for x in sample.features] for sample in request.samples]) response = DetectionResponse() for cluster in clusters: response.cluster_indices.append(cluster) return response