# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime import logging, grpc, json, queue from typing import Dict from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method from common.tools.kafka.Variables import KafkaConfig, KafkaTopic from confluent_kafka import KafkaError from common.proto.context_pb2 import Empty from common.proto.kpi_sample_types_pb2 import KpiSampleType from common.proto.kpi_manager_pb2 import KpiDescriptor, KpiId from common.proto.kpi_value_api_pb2_grpc import KpiValueAPIServiceServicer from common.proto.kpi_value_api_pb2 import KpiAlarms, KpiValueList, KpiValueFilter, KpiValue, KpiValueType from apscheduler.schedulers.background import BackgroundScheduler from apscheduler.triggers.interval import IntervalTrigger from confluent_kafka import Producer as KafkaProducer from confluent_kafka import Consumer as KafkaConsumer from prometheus_api_client import PrometheusConnect from prometheus_api_client.utils import parse_datetime from kpi_manager.client.KpiManagerClient import KpiManagerClient LOGGER = logging.getLogger(__name__) METRICS_POOL = MetricsPool('KpiValueAPI', 'NBIgRPC') PROM_URL = "http://prometheus-k8s.monitoring.svc.cluster.local:9090" # TODO: updated with the env variables class KpiValueApiServiceServicerImpl(KpiValueAPIServiceServicer): def __init__(self): LOGGER.debug('Init KpiValueApiService') self.listener_topic = KafkaTopic.ALARMS.value self.result_queue = queue.Queue() self.scheduler = BackgroundScheduler() self.kafka_producer = KafkaProducer({'bootstrap.servers' : KafkaConfig.get_kafka_address()}) self.kafka_consumer = KafkaConsumer({'bootstrap.servers' : KafkaConfig.get_kafka_address(), 'group.id' : 'kpi-value-api-frontend', 'auto.offset.reset' : 'latest'}) @safe_and_metered_rpc_method(METRICS_POOL, LOGGER) def StoreKpiValues(self, request: KpiValueList, grpc_context: grpc.ServicerContext ) -> Empty: LOGGER.debug('StoreKpiValues: Received gRPC message object: {:}'.format(request)) producer = self.kafka_producer for kpi_value in request.kpi_value_list: kpi_value_to_produce : Dict = { "kpi_uuid" : kpi_value.kpi_id.kpi_id.uuid, "timestamp" : kpi_value.timestamp.timestamp, "kpi_value_type" : self.ExtractKpiValueByType(kpi_value.kpi_value_type) } LOGGER.debug('KPI to produce is {:}'.format(kpi_value_to_produce)) msg_key = "gRPC-kpivalueapi" # str(__class__.__name__) can be used producer.produce( KafkaTopic.VALUE.value, key = msg_key, value = json.dumps(kpi_value_to_produce), callback = self.delivery_callback ) producer.flush() return Empty() def ExtractKpiValueByType(self, value): attributes = [ 'floatVal' , 'int32Val' , 'uint32Val','int64Val', 'uint64Val', 'stringVal', 'boolVal'] for attr in attributes: try: return getattr(value, attr) except (ValueError, TypeError, AttributeError): continue return None @safe_and_metered_rpc_method(METRICS_POOL, LOGGER) def SelectKpiValues(self, request: KpiValueFilter, grpc_context: grpc.ServicerContext ) -> KpiValueList: LOGGER.debug('StoreKpiValues: Received gRPC message object: {:}'.format(request)) response = KpiValueList() kpi_manager_client = KpiManagerClient() prom_connect = PrometheusConnect(url=PROM_URL) metrics = [self.GetKpiSampleType(kpi, kpi_manager_client) for kpi in request.kpi_id] start_timestamps = [parse_datetime(timestamp) for timestamp in request.start_timestamp] end_timestamps = [parse_datetime(timestamp) for timestamp in request.end_timestamp] prom_response = [] for start_time, end_time in zip(start_timestamps, end_timestamps): for metric in metrics: print(start_time, end_time, metric) LOGGER.debug(">>> Query: {:}".format(metric)) prom_response.append( prom_connect.custom_query_range( query = metric, # this is the metric name and label config start_time = start_time, end_time = end_time, step = 30, # or any other step value (missing in gRPC Filter request) ) ) for single_resposne in prom_response: # print ("{:}".format(single_resposne)) for record in single_resposne: # print("Record >>> kpi: {:} >>> time & values set: {:}".format(record['metric']['__name__'], record['values'])) for value in record['values']: # print("{:} - {:}".format(record['metric']['__name__'], value)) kpi_value = KpiValue() kpi_value.kpi_id.kpi_id = record['metric']['__name__'], kpi_value.timestamp = value[0], kpi_value.kpi_value_type.CopyFrom(self.ConverValueToKpiValueType(value['kpi_value'])) response.kpi_value_list.append(kpi_value) return response def GetKpiSampleType(self, kpi_value: str, kpi_manager_client): kpi_id = KpiId() kpi_id.kpi_id.uuid = kpi_value.kpi_id.kpi_id.uuid # print("KpiId generated: {:}".format(kpi_id)) try: kpi_descriptor_object = KpiDescriptor() kpi_descriptor_object = kpi_manager_client.GetKpiDescriptor(kpi_id) # TODO: why kpi_descriptor_object recevies a KpiDescriptor type object not Empty type object??? if kpi_descriptor_object.kpi_id.kpi_id.uuid == kpi_id.kpi_id.uuid: LOGGER.info("Extracted KpiDescriptor: {:}".format(kpi_descriptor_object)) print("Extracted KpiDescriptor: {:}".format(kpi_descriptor_object)) return KpiSampleType.Name(kpi_descriptor_object.kpi_sample_type) # extract and return the name of KpiSampleType else: LOGGER.info("No KPI Descriptor found in DB for Kpi ID: {:}".format(kpi_id)) print("No KPI Descriptor found in DB for Kpi ID: {:}".format(kpi_id)) except Exception as e: LOGGER.info("Unable to get KpiDescriptor. Error: {:}".format(e)) print ("Unable to get KpiDescriptor. Error: {:}".format(e)) @safe_and_metered_rpc_method(METRICS_POOL, LOGGER) def GetKpiAlarms(self, request: KpiId, grpc_context: grpc.ServicerContext) -> KpiAlarms: # type: ignore """ Get Alarms from Kafka return Alrams periodically. """ LOGGER.debug('GetKpiAlarms: {:}'.format(request)) response = KpiAlarms() for alarm_key, value in self.StartResponseListener(request.kpi_id.uuid): response.start_timestamp.timestamp = datetime.strptime( value["window_start"], "%Y-%m-%dT%H:%M:%S.%fZ").timestamp() response.kpi_id.kpi_id.uuid = value['kpi_id'] for key, threshold in value.items(): if key not in ['kpi_id', 'window']: response.alarms[key] = threshold yield response def StartResponseListener(self, filter_key=None): """ Start the Kafka response listener with APScheduler and return key-value pairs periodically. """ LOGGER.info("Starting StartResponseListener") # Schedule the ResponseListener at fixed intervals self.scheduler.add_job( self.response_listener, trigger=IntervalTrigger(seconds=5), args=[filter_key], id=f"response_listener_{self.listener_topic}", replace_existing=True ) self.scheduler.start() LOGGER.info(f"Started Kafka listener for topic {self.listener_topic}...") try: while True: LOGGER.info("entering while...") key, value = self.result_queue.get() # Wait until a result is available LOGGER.info("In while true ...") yield key, value # Yield the result to the calling function except Exception as e: LOGGER.warning("Listener stopped. Error: {:}".format(e)) finally: self.scheduler.shutdown() def response_listener(self, filter_key=None): """ Poll Kafka messages and put key-value pairs into the queue. """ LOGGER.info(f"Polling Kafka topic {self.listener_topic}...") consumer = self.kafka_consumer consumer.subscribe([self.listener_topic]) while True: msg = consumer.poll(1.0) if msg is None: continue elif msg.error(): if msg.error().code() != KafkaError._PARTITION_EOF: LOGGER.error(f"Kafka error: {msg.error()}") break try: key = msg.key().decode('utf-8') if msg.key() else None if filter_key is not None and key == filter_key: value = json.loads(msg.value().decode('utf-8')) LOGGER.info(f"Received key: {key}, value: {value}") self.result_queue.put((key, value)) else: LOGGER.warning(f"Skipping message with unmatched key: {key} - {filter_key}") except Exception as e: LOGGER.error(f"Error processing Kafka message: {e}") def delivery_callback(self, err, msg): if err: LOGGER.debug('Message delivery failed: {:}'.format(err)) else: LOGGER.debug('Message delivered to topic {:}'.format(msg.topic())) def ConverValueToKpiValueType(self, value): kpi_value_type = KpiValueType() if isinstance(value, int): kpi_value_type.int32Val = value elif isinstance(value, float): kpi_value_type.floatVal = value elif isinstance(value, str): kpi_value_type.stringVal = value elif isinstance(value, bool): kpi_value_type.boolVal = value # Add other checks for different types as needed return kpi_value_type