diff --git a/src/analytics/README.md b/src/analytics/README.md
index ece11ea969caf1cf92fb474ae1371c9979231ac2..7ae0dd5a59749c552d9818a050f257d5e74d527d 100644
--- a/src/analytics/README.md
+++ b/src/analytics/README.md
@@ -4,29 +4,25 @@
 The following requirements should be fulfilled before the execuation of Analytics service.
 
 1. A virtual enviornment exist with all the required packages listed in [requirements.in](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/analytics/frontend/requirements.in) sucessfully  installed.
-2. Verify the creation of required database and table. The 
-[Analytics DB test](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/analytics/tests/test_analytics_db.py) python file lists the functions to create tables and the database.
-3. The Analytics backend service should be running.
-
-4. All required Kafka topics must exist. Call `create_all_topics` from the [Kafka class](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/common/tools/kafka/Variables.py) to create any topics that do not already exist.
+2. The Analytics backend service should be running.
+3. All required Kafka topics must exist. Call `create_all_topics` from the [Kafka class](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/common/tools/kafka/Variables.py) to create any topics that do not already exist.
 ```
 from common.tools.kafka.Variables import KafkaTopic
 KafkaTopic.create_all_topics()
 ```
 
-5. There will be an input stream on the Kafka topic that the Spark Streamer will consume and apply a defined thresholds.
+4. There will be an input stream on the Kafka topic that the Streamer class will consume and apply a defined thresholds.
 - A JSON encoded string should be generated in the following format:
 ```
 '{"time_stamp": "2024-09-03T12:36:26Z", "kpi_id": "6e22f180-ba28-4641-b190-2287bf448888", "kpi_value": 44.22}'
 ```
-- `kpi_value` should be float or int.
 - The Kafka producer key should be the UUID of the Analyzer used when creating it.
-- Use the following Kafka topic to generate the stream: `KafkaTopic.ANALYTICS_RESPONSE.value`.
+- Generate the stream on the following Kafka topic: `KafkaTopic.ANALYTICS_RESPONSE.value`.
 
 ## Steps to create and start Analyzer
 The analyzer can be declared as below but there are many other ways to declare:
 
-The given object creation process for `_create_analyzer` involves defining an instance of the `Analyzer` message from the [gRPC definition](https://labs.etsi.org/rep/tfs/controller/-/blob/feat/194-unable-to-correctly-extract-the-aggregation-function-names-from-the-dictionary-received-as/proto/analytics_frontend.proto) and populating its fields.
+The given object creation process for `_create_analyzer` involves defining an instance of the `Analyzer` message from the [gRPC definition](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/proto/analytics_frontend.proto) and populating its fields.
 
 ```
 from common.proto.analytics_frontend_pb2 import AnalyzerId
@@ -101,18 +97,5 @@ analytics_client_object = AnalyticsFrontendClient()
 analytics_client_object.StartAnalyzer(_create_analyzer_id)
 ```
 
-### **How to Receive Analyzer Responses**
-   - There is a non-gRPC method in the analyzer frontend called `StartResponseListener(<analyzer_uuid>)`. The `analyzer_uuid` is the UUID of the analyzer provided when calling `StartAnalyzer()`. The following code will log the responses:
-```python
-from analytics.frontend.service.AnalyticsFrontendServiceServicerImpl import AnalyticsFrontendServiceServicerImpl
-
-analytic_frontend_service_object = AnalyticsFrontendServiceServicerImpl()
-for response in analytic_frontend_service_object.StartResponseListener(<analyzer_uuid>):
-    LOGGER.debug(response)
-```
-
-### **Understanding the Output of the Analyzer**
-- **Output Column Names**: The output JSON string will include two keys for each defined threshold. For example, the `min_latency` threshold will generate two keys: `min_latency_THRESHOLD_FAIL` and `min_latency_THRESHOLD_RAISE`.
-  - `min_latency_THRESHOLD_FAIL` is triggered if the average latency calculated within the defined window size is less than the specified threshold range.
-  - `min_latency_THRESHOLD_RAISE` is triggered if the average latency calculated within the defined window size exceeds the specified threshold range.
-- The thresholds `min_latency_THRESHOLD_FAIL` and `min_latency_THRESHOLD_RAISE` will have a value of `TRUE` if activated; otherwise, they will be set to `FALSE`.
+### **How to Receive Analyzer Response**
+   - `GetAlarms(<kpi_id>) -> KpiAlarms` is a method in the `KPI Value Api` that retrieves alarms for a given KPI ID. This method returns a stream of alarms associated with the specified KPI.
diff --git a/src/kpi_manager/README.md b/src/kpi_manager/README.md
index 6e9b56d9349aa6acd5c41004e32c933619a37f65..0496f0945047950e9fbd4e5caf78a79a15051cf6 100644
--- a/src/kpi_manager/README.md
+++ b/src/kpi_manager/README.md
@@ -5,20 +5,14 @@ Ensure the following requirements are met before executing the KPI management se
 
 1. A virtual enviornment exist with all the required packages listed in ["requirements.in"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_manager/requirements.in) sucessfully  installed.
 2. Verify the creation of required database and table. The 
-[KPI DB test](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_manager/tests/test_kpi_db.py) python file lists the functions to create tables and the database. The
-[KPI Engine](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_manager/database/KpiEngine.py) file contains the DB string.
+[KPI DB test](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_manager/tests/test_kpi_db.py) python file lists the functions to create tables and the database.
 
 ### Messages format templates
 The ["messages"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_manager/tests/test_messages.py) python file contains templates for creating gRPC messages.
 
-### Unit test file
-The ["KPI manager test"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_manager/tests/test_kpi_manager.py) python file lists various tests conducted to validate functionality.
+### Flow of execution (Kpi Manager Service functions)
+1. Call the gRPC method `SetKpiDescriptor(KpiDescriptor)->KpiId` to add the KpiDescriptor to the `Kpi` DB. `KpiDescriptor` and `KpiId` are both pre-defined gRPC message types.
 
-### Flow of execution (Kpi Maanager Service functions)
-1. Call the `create_database()` and `create_tables()` functions from `Kpi_DB` class to create the required database and table if they don't exist. Call `verify_tables` to verify the existence of KPI table.
+2. Call `GetKpiDescriptor(KpiId)->KpiDescriptor` to read the `KpiDescriptor` from the DB and `DeleteKpiDescriptor(KpiId)` to delete the `KpiDescriptor` from the DB.
 
-2. Call the gRPC method `SetKpiDescriptor(KpiDescriptor)->KpiId` to add the KpiDescriptor to the `Kpi` DB. `KpiDescriptor` and `KpiId` are both pre-defined gRPC message types.
-
-3. Call `GetKpiDescriptor(KpiId)->KpiDescriptor` to read the `KpiDescriptor` from the DB and `DeleteKpiDescriptor(KpiId)` to delete the `KpiDescriptor` from the DB.
-
-4. Call `SelectKpiDescriptor(KpiDescriptorFilter)->KpiDescriptorList` to get all `KpiDescriptor` objects that matches filter criteria. `KpiDescriptorFilter` and `KpiDescriptorList` are pre-defined gRPC message types.
+3. Call `SelectKpiDescriptor(KpiDescriptorFilter)->KpiDescriptorList` to get all `KpiDescriptor` objects that matches filter criteria. `KpiDescriptorFilter` and `KpiDescriptorList` are pre-defined gRPC message types.
diff --git a/src/kpi_value_api/README.md b/src/kpi_value_api/README.md
index 70ba2c5e79c79147e336307ecc6d5ddfc263df90..f946360633ccb62a49e44b2f4b77227dcda9d21f 100644
--- a/src/kpi_value_api/README.md
+++ b/src/kpi_value_api/README.md
@@ -1,4 +1,4 @@
-# How to locally run and test KPI Value API micro-service
+# How to locally run and test KPI Value API
 
 ### Pre-requisets 
 Ensure the following requirements are met before executing the KPI Value API service.
@@ -7,7 +7,6 @@ Ensure the following requirements are met before executing the KPI Value API ser
 
 2. A virtual enviornment exist with all the required packages listed in ["requirements.in"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_value_api/requirements.in) file sucessfully installed.
 
-3. Call the ["create_all_topics()"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/common/tools/kafka/Variables.py) function to verify the existence of all required topics on kafka. 
 
 ### Messages format templates
 The ["messages"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_value_api/tests/messages.py) python file contains templates for creating gRPC messages.
@@ -15,9 +14,9 @@ The ["messages"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi
 ### Unit test file
 The ["KPI Value API test"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_value_api/tests/test_kpi_value_api.py) python file enlist various tests conducted to validate functionality.
 
-### Flow of execution (Kpi Maanager Service functions)
-1. Call the `create_new_topic_if_not_exists(<list of string>)` method to create any new topics if needed.
+### Flow of execution (Kpi Value Api Service functions)
+1. Call `StoreKpiValues(KpiValueList)` to produce `Kpi Value` on a Kafka Topic. (The `KpiValueWriter` microservice will consume and process this `Kpi Value`)
 
-2. Call `StoreKpiValues(KpiValueList)` to produce `Kpi Value` on a Kafka Topic. (The `KpiValueWriter` microservice will consume and process the `Kpi Value`)
+2. Call `SelectKpiValues(KpiValueFilter) -> KpiValueList` to read metric from the Prometheus DB.
 
-3. Call `SelectKpiValues(KpiValueFilter) -> KpiValueList` to read metric from the Prometheus DB.
+3. Call `GetKpiAlarms(KpiId) -> KpiAlarms` to read alrams from the Kafka.
diff --git a/src/kpi_value_writer/README.md b/src/kpi_value_writer/README.md
index c45a0e39534fae9efef4174d5ca5be7047845c48..703358728178f0ab703ae7b78096430eb5e0503b 100644
--- a/src/kpi_value_writer/README.md
+++ b/src/kpi_value_writer/README.md
@@ -1,17 +1,15 @@
-# How to locally run and test the KPI Value Writer micro-service
+# How to locally run and test the KPI Value Writer
 
 ### Pre-requisets 
-Ensure the following requirements are meet before executing the KPI Value Writer service>
+Ensure the following requirements are meet before executing the KPI Value Writer service.
 
-1. The KPI Manger and KPI Value API services are running and Apache Kafka is running.
+1. The KPI Manger and KPI Value API services are running.
 
 2. A Virtual enviornment exist with all the required packages listed in the ["requirements.in"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_value_writer/requirements.in) file installed sucessfully.
 
 ### Messages format templates
 The ["messages"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_value_writer/tests/test_messages.py) python file contains the templates to create gRPC messages.
 
-### Unit test file
-The ["KPI Value API test"](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/kpi_value_writer/tests/test_kpi_value_writer.py) python file enlist various tests conducted to validate functionality.
 
 ### Flow of execution
-1. Call the `RunKafkaConsumer` method from the `KpiValueWriter` class to start consuming the `KPI Value` generated by the `KPI Value API` or `Telemetry`. For every valid `KPI Value` consumer from Kafka, it invokes the `PrometheusWriter` class to prepare and push the metric to the Promethues DB.
+1. The service will be running, consuming KPI values from the Kafka topic, and pushing KPI metrics to Prometheus.
diff --git a/src/telemetry/README.md b/src/telemetry/README.md
index da43bd471c384ae9133871a097e94043f70ed7de..7acef89f974c29b4c4370d4c4230c7fada6407c2 100644
--- a/src/telemetry/README.md
+++ b/src/telemetry/README.md
@@ -1,10 +1,23 @@
 # How to locally run and test Telemetry service
 
 ### Pre-requisets 
-The following requirements should be fulfilled before the execuation of Telemetry service.
+The following requirements should be fulfilled before the execuation of Analytics service.
 
-1. verify that [telmetry_frontend.proto](https://labs.etsi.org/rep/tfs/controller/-/blob/feat/71-cttc-separation-of-monitoring/proto/telemetry_frontend.proto) file exists and grpcs file are generated sucessfully. 
-2. virtual enviornment exist with all the required packages listed in ["requirements.in"](https://labs.etsi.org/rep/tfs/controller/-/blob/feat/71-cttc-separation-of-monitoring/src/telemetry/telemetry_virenv.txt) are installed sucessfully.
-3. verify the creation of required database and table.
-[DB test](https://labs.etsi.org/rep/tfs/controller/-/blob/feat/71-cttc-separation-of-monitoring/src/telemetry/database/tests/managementDBtests.py) python file enlist the functions to create tables and database.
-[KPI Engine](https://labs.etsi.org/rep/tfs/controller/-/blob/feat/71-cttc-separation-of-monitoring/src/kpi_manager/service/database/KpiEngine.py) contains the DB string, update the string as per your deployment.
+1. A virtual enviornment exist with all the required packages listed in [requirements.in](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/telemetry/requirements.in) sucessfully  installed.
+2. The Telemetry backend service should be running.
+3. All required Kafka topics must exist. Call `create_all_topics` from the [Kafka class](https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/common/tools/kafka/Variables.py) to create any topics that do not already exist.
+```
+from common.tools.kafka.Variables import KafkaTopic
+KafkaTopic.create_all_topics()
+```
+
+## Steps to create telemetry collector
+The collector can be declared as below but there are many other ways to declare:
+
+```
+_create_collector_request                                  = telemetry_frontend_pb2.Collector()
+_create_collector_request.collector_id.collector_id.uuid   = str(uuid.uuid4()) 
+_create_collector_request.kpi_id.kpi_id.uuid               = str(uuid.uuid4())
+_create_collector_request.duration_s                       = 100  # in seconds
+_create_collector_request.interval_s                       = 10   # in seconds
+```