diff --git a/src/telemetry/backend/service/TelemetryBackendService.py b/src/telemetry/backend/service/TelemetryBackendService.py index 6cc3aab5f726dce5a55570c04d6e3ded8bc28d76..9d393b1adc4c4c002bec94c9079aa3ba7a361672 100755 --- a/src/telemetry/backend/service/TelemetryBackendService.py +++ b/src/telemetry/backend/service/TelemetryBackendService.py @@ -29,11 +29,14 @@ from confluent_kafka.admin import AdminClient, NewTopic from common.proto.telemetry_frontend_pb2 import Collector, CollectorId from common.method_wrappers.Decorator import MetricsPool, safe_and_metered_rpc_method -LOGGER = logging.getLogger(__name__) -METRICS_POOL = MetricsPool('Telemetry', 'TelemetryBackend') -KAFKA_SERVER_IP = '127.0.0.1:9092' +LOGGER = logging.getLogger(__name__) +METRICS_POOL = MetricsPool('Telemetry', 'TelemetryBackend') +KAFKA_SERVER_IP = '127.0.0.1:9092' ADMIN_KAFKA_CLIENT = AdminClient({'bootstrap.servers': KAFKA_SERVER_IP}) -ACTIVE_COLLECTORS = [] +ACTIVE_COLLECTORS = [] +KAFKA_TOPICS = {'request' : 'topic_request', + 'response': 'topic_response'} +EXPORTER_ENDPOINT = "http://node-exporter-7465c69b87-b6ks5.telebackend:9100/metrics" class TelemetryBackendService: """ @@ -43,7 +46,7 @@ class TelemetryBackendService: def __init__(self): LOGGER.info('Init TelemetryBackendService') - def run_kafka_listener(self)->bool: # type: ignore + def run_kafka_listener(self)->bool: threading.Thread(target=self.kafka_listener).start() return True @@ -56,26 +59,26 @@ class TelemetryBackendService: 'group.id' : 'backend', 'auto.offset.reset' : 'latest' } - topic_request = "topic_request" - if (self.create_topic_if_not_exists([topic_request])): - consumerObj = KafkaConsumer(conusmer_configs) - consumerObj.subscribe([topic_request]) - - while True: - receive_msg = consumerObj.poll(2.0) - if receive_msg is None: - print (time.time(), " - Telemetry backend is listening on Kafka Topic: ", topic_request) # added for debugging purposes - continue - elif receive_msg.error(): - if receive_msg.error().code() == KafkaError._PARTITION_EOF: - continue - else: - print("Consumer error: {}".format(receive_msg.error())) - break - (kpi_id, duration, interval) = ast.literal_eval(receive_msg.value().decode('utf-8')) - collector_id = receive_msg.key().decode('utf-8') - self.run_initiate_collector_backend(collector_id, kpi_id, duration, interval) + # topic_request = "topic_request" + consumerObj = KafkaConsumer(conusmer_configs) + # consumerObj.subscribe([topic_request]) + consumerObj.subscribe([KAFKA_TOPICS['request']]) + while True: + receive_msg = consumerObj.poll(2.0) + if receive_msg is None: + # print (time.time(), " - Telemetry backend is listening on Kafka Topic: ", topic_request) # added for debugging purposes + print (time.time(), " - Telemetry backend is listening on Kafka Topic: ", KAFKA_TOPICS['request']) # added for debugging purposes + continue + elif receive_msg.error(): + if receive_msg.error().code() == KafkaError._PARTITION_EOF: + continue + else: + print("Consumer error: {}".format(receive_msg.error())) + break + (kpi_id, duration, interval) = ast.literal_eval(receive_msg.value().decode('utf-8')) + collector_id = receive_msg.key().decode('utf-8') + self.run_initiate_collector_backend(collector_id, kpi_id, duration, interval) def run_initiate_collector_backend(self, collector_id: str, kpi_id: str, duration: int, interval: int): @@ -89,8 +92,10 @@ class TelemetryBackendService: start_time = time.time() while True: ACTIVE_COLLECTORS.append(collector_id) - if time.time() - start_time >= duration: # type: ignore - print("Requested Execution Time Completed: \n --- Consumer terminating: KPI ID: ", kpi_id, " - ", time.time() - start_time) + if time.time() - start_time >= duration: # condition to terminate backend + print("Execution Time Completed: \n --- Consumer terminating: KPI ID: ", kpi_id, " - ", time.time() - start_time) + self.generate_kafka_response(collector_id, "NULL", False) + # write to Kafka break # print ("Received KPI: ", kpi_id, ", Duration: ", duration, ", Fetch Interval: ", interval) self.extract_kpi_value(collector_id, kpi_id) @@ -101,7 +106,8 @@ class TelemetryBackendService: """ Method to extract kpi value. """ - measured_kpi_value = random.randint(1,100) + measured_kpi_value = random.randint(1,100) # Should be extracted from exporter/stream + # measured_kpi_value = self.fetch_node_exporter_metrics() # exporter extracted metric value against default KPI self.generate_kafka_response(collector_id, kpi_id , measured_kpi_value) def generate_kafka_response(self, collector_id: str, kpi_id: str, kpi_value: Any): @@ -111,14 +117,15 @@ class TelemetryBackendService: producer_configs = { 'bootstrap.servers': KAFKA_SERVER_IP, } - topic_response = "topic_response" + # topic_response = "topic_response" msg_value : Tuple [str, Any] = (kpi_id, kpi_value) msg_key = collector_id producerObj = KafkaProducer(producer_configs) - producerObj.produce(topic_response, key=msg_key, value= str(msg_value), callback=self.delivery_callback) + # producerObj.produce(topic_response, key=msg_key, value= str(msg_value), callback=self.delivery_callback) + producerObj.produce(KAFKA_TOPICS['response'], key=msg_key, value= str(msg_value), callback=self.delivery_callback) producerObj.flush() - def create_topic_if_not_exists(self, new_topics: list): + def create_topic_if_not_exists(self, new_topics: list) -> bool: """ Method to create Kafka topic if it does not exist. Args: @@ -132,12 +139,10 @@ class TelemetryBackendService: print(f"Topic '{topic}' does not exist. Creating...") new_topic = NewTopic(topic, num_partitions=1, replication_factor=1) ADMIN_KAFKA_CLIENT.create_topics([new_topic]) - return True except KafkaException as e: print(f"Failed to create topic: {e}") return False - - self.verify_required_kafka_topics() + return True def delivery_callback(self, err, msg): """ @@ -151,22 +156,6 @@ class TelemetryBackendService: else: print(f'Message delivered to topic {msg.topic()}') - # Function to create a list of topics - - # Function to list all topics in the Kafka cluster - def verify_required_kafka_topics(self) -> list: - """List all topics in the Kafka cluster.""" - try: - # Fetch metadata from the broker - metadata = ADMIN_KAFKA_CLIENT.list_topics(timeout=10) - topics = list(metadata.topics.keys()) - print("Topics in the cluster:", topics) - return topics - except Exception as e: - print(f"Failed to list topics: {e}") - return [] - - # ----------- BELOW: Actual Implementation of Kafka Producer with Node Exporter ----------- def fetch_node_exporter_metrics(self): @@ -176,7 +165,6 @@ class TelemetryBackendService: str: Metrics fetched from Node Exporter. """ KPI = "node_network_receive_packets_total" - EXPORTER_ENDPOINT = "http://node-exporter-7465c69b87-b6ks5.telebackend:9100/metrics" try: response = requests.get(EXPORTER_ENDPOINT) # type: ignore if response.status_code == 200: @@ -200,7 +188,7 @@ class TelemetryBackendService: """ Method to extract the value of a metric from the metrics string. Args: - metrics (str): Metrics string fetched from Node Exporter. + metrics (str): Metrics string fetched from Exporter. metric_name (str): Name of the metric to extract. Returns: float: Value of the extracted metric, or None if not found. @@ -215,39 +203,4 @@ class TelemetryBackendService: print(f"Metric '{metric_name}' not found in the metrics.") return None - def produce_metrics(self): - """ - Method to produce metrics to Kafka topic as per Kafka configs. - """ - conf = { - 'bootstrap.servers': KAFKA_SERVER_IP, - } - - admin_client = AdminClient(conf) - self.create_topic_if_not_exists(admin_client) - - kafka_producer = KafkaProducer(conf) - - try: - start_time = time.time() - while True: - metrics = self.fetch_node_exporter_metrics() # select the function name based on the provided requirements - - if metrics: - kafka_producer.produce("topic_raw", str(metrics), callback=self.delivery_callback) - kafka_producer.flush() - # print("Metrics produced to Kafka topic") - - # Check if the specified run duration has elapsed - if time.time() - start_time >= self.run_duration: # type: ignore - break - - # waiting time until next fetch - time.sleep(self.fetch_interval) # type: ignore - except KeyboardInterrupt: - print("Keyboard interrupt detected. Exiting...") - finally: - kafka_producer.flush() - # kafka_producer.close() # this command generates ERROR - # ----------- ABOVE: Actual Implementation of Kafka Producer with Node Exporter ----------- \ No newline at end of file diff --git a/src/telemetry/backend/tests/testTelemetryBackend.py b/src/telemetry/backend/tests/testTelemetryBackend.py index bdbb8526ac9d7ff28256db0b8f7d53936a3b8187..e3e8bbc4b7cc65b699892cf9974b4b3875bf2cf0 100644 --- a/src/telemetry/backend/tests/testTelemetryBackend.py +++ b/src/telemetry/backend/tests/testTelemetryBackend.py @@ -29,6 +29,14 @@ LOGGER = logging.getLogger(__name__) # Tests Implementation of Telemetry Backend ########################### +def test_verify_kafka_topics(): + LOGGER.warning('test_receive_kafka_request requesting') + TelemetryBackendServiceObj = TelemetryBackendService() + KafkaTopics = ['topic_request', 'topic_response'] + response = TelemetryBackendServiceObj.create_topic_if_not_exists(KafkaTopics) + LOGGER.debug(str(response)) + assert isinstance(response, bool) + def test_run_kafka_listener(): LOGGER.warning('test_receive_kafka_request requesting') TelemetryBackendServiceObj = TelemetryBackendService() diff --git a/src/telemetry/frontend/service/TelemetryFrontendServiceServicerImpl.py b/src/telemetry/frontend/service/TelemetryFrontendServiceServicerImpl.py index ebd0db4ac1d2574720057d357bac1e5bf565510a..f940ccd65f27266c3dedfad675fb7465d5b1af68 100644 --- a/src/telemetry/frontend/service/TelemetryFrontendServiceServicerImpl.py +++ b/src/telemetry/frontend/service/TelemetryFrontendServiceServicerImpl.py @@ -34,6 +34,9 @@ LOGGER = logging.getLogger(__name__) METRICS_POOL = MetricsPool('Monitoring', 'TelemetryFrontend') KAFKA_SERVER_IP = '127.0.0.1:9092' ACTIVE_COLLECTORS = [] +KAFKA_TOPICS = {'request' : 'topic_request', + 'response': 'topic_response'} + class TelemetryFrontendServiceServicerImpl(TelemetryFrontendServiceServicer): def __init__(self, name_mapping : NameMapping): @@ -51,7 +54,7 @@ class TelemetryFrontendServiceServicerImpl(TelemetryFrontendServiceServicer): _collector_interval = int(request.interval_s) self.generate_kafka_request(_collector_id, _collector_kpi_id, _collector_duration, _collector_interval) # self.run_generate_kafka_request(_collector_id, _collector_kpi_id, _collector_duration, _collector_interval) - response.collector_id.uuid = request.collector_id.collector_id.uuid # type: ignore + response.collector_id.uuid = request.collector_id.collector_id.uuid # type: ignore return response def run_generate_kafka_request(self, msg_key: str, kpi: str, duration : int, interval: int): @@ -68,13 +71,14 @@ class TelemetryFrontendServiceServicerImpl(TelemetryFrontendServiceServicer): producer_configs = { 'bootstrap.servers': KAFKA_SERVER_IP, } - topic_request = "topic_request" + # topic_request = "topic_request" msg_value = Tuple [str, int, int] msg_value = (kpi, duration, interval) print ("Request generated: ", "Colletcor Id: ", msg_key, \ ", \nKPI: ", kpi, ", Duration: ", duration, ", Interval: ", interval) producerObj = KafkaProducer(producer_configs) - producerObj.produce(topic_request, key=msg_key, value= str(msg_value), callback=self.delivery_callback) + producerObj.produce(KAFKA_TOPICS['request'], key=msg_key, value= str(msg_value), callback=self.delivery_callback) + # producerObj.produce(topic_request, key=msg_key, value= str(msg_value), callback=self.delivery_callback) ACTIVE_COLLECTORS.append(msg_key) producerObj.flush() return producerObj @@ -94,15 +98,15 @@ class TelemetryFrontendServiceServicerImpl(TelemetryFrontendServiceServicer): 'group.id' : 'frontend', 'auto.offset.reset' : 'latest' } - topic_response = "topic_response" + # topic_response = "topic_response" consumerObj = KafkaConsumer(conusmer_configs) - consumerObj.subscribe([topic_response]) + consumerObj.subscribe([KAFKA_TOPICS['response']]) # print (time.time()) while True: receive_msg = consumerObj.poll(2.0) if receive_msg is None: - print (" - Telemetry frontend listening on Kafka Topic: ", topic_response) # added for debugging purposes + print (" - Telemetry frontend listening on Kafka Topic: ", KAFKA_TOPICS['response']) # added for debugging purposes continue elif receive_msg.error(): if receive_msg.error().code() == KafkaError._PARTITION_EOF: