Newer
Older
# Copyright 2022-2023 ETSI TeraFlowSDN - TFS OSG (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging, pandas, threading
from typing import Dict, Optional, Tuple
from sklearn.cluster import KMeans
from common.proto.context_pb2 import Slice
from common.tools.grpc.Tools import grpc_message_to_json_string
from .Constants import SLICE_GROUPS
from .MetricsExporter import MetricsExporter
from .Tools import (
add_slice_to_group, create_slice_groups, get_slice_grouping_parameters, is_slice_grouping_enabled,
remove_slice_from_group)
LOGGER = logging.getLogger(__name__)
class SliceGrouper:
def __init__(self) -> None:
self._lock = threading.Lock()
self._is_enabled = is_slice_grouping_enabled()
LOGGER.info('Slice Grouping: {:s}'.format('ENABLED' if self._is_enabled else 'DISABLED'))
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
if not self._is_enabled: return
metrics_exporter = MetricsExporter()
metrics_exporter.create_table()
self._slice_groups = create_slice_groups(SLICE_GROUPS)
# Initialize and fit K-Means with the pre-defined clusters we want, i.e., one per slice group
df_groups = pandas.DataFrame(SLICE_GROUPS, columns=['name', 'availability', 'capacity_gbps'])
k_means = KMeans(n_clusters=df_groups.shape[0])
k_means.fit(df_groups[['availability', 'capacity_gbps']])
df_groups['label'] = k_means.predict(df_groups[['availability', 'capacity_gbps']])
self._k_means = k_means
self._df_groups = df_groups
self._group_mapping : Dict[str, Dict] = {
group['name']:{k:v for k,v in group.items() if k != 'name'}
for group in list(df_groups.to_dict('records'))
}
label_to_group = {}
for group_name,group_attrs in self._group_mapping.items():
label = group_attrs['label']
availability = group_attrs['availability']
capacity_gbps = group_attrs['capacity_gbps']
metrics_exporter.export_point(
group_name, group_name, availability, capacity_gbps, is_center=True)
label_to_group[label] = group_name
self._label_to_group = label_to_group
def _select_group(self, slice_obj : Slice) -> Optional[Tuple[str, float, float]]:
with self._lock:
grouping_parameters = get_slice_grouping_parameters(slice_obj)
LOGGER.debug('[_select_group] grouping_parameters={:s}'.format(str(grouping_parameters)))
if grouping_parameters is None: return None
sample = pandas.DataFrame([grouping_parameters], columns=['availability', 'capacity_gbps'])
sample['label'] = self._k_means.predict(sample)
sample = sample.to_dict('records')[0] # pylint: disable=unsubscriptable-object
LOGGER.debug('[_select_group] sample={:s}'.format(str(sample)))
label = sample['label']
availability = sample['availability']
capacity_gbps = sample['capacity_gbps']
group_name = self._label_to_group[label]
LOGGER.debug('[_select_group] group_name={:s}'.format(str(group_name)))
return group_name, availability, capacity_gbps
@property
def is_enabled(self): return self._is_enabled
def group(self, slice_obj : Slice) -> bool:
LOGGER.debug('[group] slice_obj={:s}'.format(grpc_message_to_json_string(slice_obj)))
selected_group = self._select_group(slice_obj)
LOGGER.debug('[group] selected_group={:s}'.format(str(selected_group)))
if selected_group is None: return False
return add_slice_to_group(slice_obj, selected_group)
def ungroup(self, slice_obj : Slice) -> bool:
LOGGER.debug('[ungroup] slice_obj={:s}'.format(grpc_message_to_json_string(slice_obj)))
selected_group = self._select_group(slice_obj)
LOGGER.debug('[ungroup] selected_group={:s}'.format(str(selected_group)))
if selected_group is None: return False
return remove_slice_from_group(slice_obj, selected_group)