Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
////////////////////////////////////////////////////////////////////////////////////////
/**
* # Copyright 2022 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA) www.cttc.es
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* Author: CTTC/CERCA PONS RU Ricardo Martínez (ricardo.martinez@cttc.es)
*/
/////////////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <glib.h>
#include <sys/time.h>
#include <ctype.h>
#include <strings.h>
#include <time.h>
#include <math.h>
#include <fcntl.h>
#include <uuid/uuid.h>
#include <errno.h>
#include "pathComp_log.h"
#include "pathComp.h"
#include "pathComp_tools.h"
gint numPathCompIntents = 0; // number of events triggering the path computation
//gint numSuccesPathComp = 0; // number of events resulting in succesfully path computations fulfilling the constraints
struct timeval total_path_comp_time;
gdouble totalReqBw = 0.0;
gdouble totalServedBw = 0.0;
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function for time processing
*
* @param a
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
struct timeval tv_adjust (struct timeval a) {
while (a.tv_usec >= 1000000) {
a.tv_usec -= 1000000;
a.tv_sec++;
}
while (a.tv_usec < 0) {
a.tv_usec += 1000000;
a.tv_sec--;
}
return a;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief friendly function to copy safely strings
*
* @param dst
* @param src
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
void duplicate_string(gchar* dst, gchar* src) {
strcpy(dst, src);
dst[strlen(dst)] = '\0';
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to print the computed the path
*
* @param path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path (struct compRouteOutputItem_t *p) {
DEBUG_PC ("=========== COMPUTED PATH =======================");
DEBUG_PC ("E2E Avail. Bw: %f, Latency: %f, Cost: %f, Consumed Power (in W): %f", p->availCap, p->delay, p->cost, p->power);
for (gint k = 0; k < p->numRouteElements; k++) {
DEBUG_PC ("%s[%s] --> %s[%s]", p->routeElement[k].aNodeId.nodeId, p->routeElement[k].aEndPointId,
p->routeElement[k].zNodeId.nodeId, p->routeElement[k].zEndPointId);
DEBUG_PC("\t linkId: %s", p->routeElement[k].linkId);
DEBUG_PC("\t aTopologyId: %s", p->routeElement[k].aTopologyId);
DEBUG_PC("\t zTopologyId: %s", p->routeElement[k].zTopologyId);
}
DEBUG_PC ("==================================================================");
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to print the output path formed by link Ids
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path_t(struct path_t* p) {
g_assert(p);
DEBUG_PC(" ============ COMPUTED OUTPUT PATH =================");
DEBUG_PC("Path AvailBw: %f, Cost: %f, Latency: %f, Power: %f", p->path_capacity.value,
p->path_cost.cost_value, p->path_latency.fixed_latency, p->path_power.power);
DEBUG_PC("number of links of path %d", p->numPathLinks);
for (gint k = 0; k < p->numPathLinks; k++) {
DEBUG_PC("Link: %s", p->pathLinks[k].linkId);
for (gint l = 0; l < p->pathLinks[k].numLinkTopologies; l++) {
DEBUG_PC("end Link [%d] TopologyId: %s", l, p->pathLinks[k].linkTopologies[l].topologyId);
DEBUG_PC(" ContextId: %s", p->pathLinks[k].topologyId.contextId);
DEBUG_PC(" TopologyUUid: %s", p->pathLinks[k].topologyId.topology_uuid);
DEBUG_PC(" aDeviceId: %s", p->pathLinks[k].aDeviceId);
DEBUG_PC(" aEndpointId: %s", p->pathLinks[k].aEndPointId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used allocate memory for struct path_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
struct path_t* create_path() {
struct path_t* p = g_malloc0(sizeof(struct path_t));
if (p == NULL) {
DEBUG_PC("Memory allocation failure");
exit(-1);
}
return(p);
}
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Returns the char (36 bytes) format of a uuid
*
* @param uuid
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gchar* get_uuid_char(uuid_t uuid) {
gchar* uuidChar = g_malloc0(16); // uuid has 36 chars
if (uuidChar == NULL) {
DEBUG_PC("Memory Allocation failure");
exit(-1);
}
uuid_unparse(uuid, (char *)uuidChar);
return uuidChar;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Makes a copy of the service identifier (including the context)
*
* @param o
* @param i
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_service_id(struct serviceId_t* o, struct serviceId_t* i) {
memcpy(o->contextId, i->contextId, sizeof(i->contextId));
memcpy(o->service_uuid, i->service_uuid, sizeof(i->service_uuid));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Makes a copy of the service endpoint identifier (including the topology (contect and topology id), device and endpoint (port))
*
* @param oEp
* @param iEp
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_service_endpoint_id(struct service_endpoints_id_t* oEp, struct service_endpoints_id_t* iEp) {
// copy topology information
memcpy(oEp->topology_id.contextId, iEp->topology_id.contextId, sizeof(iEp->topology_id.contextId));
memcpy(oEp->topology_id.topology_uuid, iEp->topology_id.topology_uuid, sizeof(iEp->topology_id.topology_uuid));
// copy the endpoint
memcpy(oEp->device_uuid, iEp->device_uuid, sizeof(iEp->device_uuid));
memcpy(oEp->endpoint_uuid, iEp->endpoint_uuid, sizeof(iEp->endpoint_uuid));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief From the set of contexts, it is returned the graph associated to that context matching
* with the passed contextId.
*
* @param Set
* @param contextId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct graph_t* get_graph_by_contextId(GList* set, gchar* contextId) {
g_assert(contextId);
// iterate over the set of context. Pick the one matching with contextId, and return the graph.
// If not found, return NULL
struct graph_t* g = NULL;
for (GList *ln = g_list_first(set);
ln;
ln = g_list_next(ln)){
struct context_t* context = (struct context_t*)(ln->data);
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
if (strcmp(context->contextId, contextId) == 0) {
g = &(context->g);
return g;
}
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Process the service constraint and maps them into the path constraints
* to be fulfilled
*
* @param path_constraints
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct path_constraints_t * get_path_constraints(struct service_t* s) {
g_assert(s);
struct path_constraints_t* path_constraints = g_malloc0(sizeof(struct path_constraints_t));
if (path_constraints == NULL) {
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
char* eptr;
for (gint i = 0; i < s->num_service_constraints; i++) {
struct constraint_t* constraint = &(s->constraints[i]);;
if (strncmp((const char*)constraint->constraint_type, "bandwidth", 9) == 0) {
path_constraints->bwConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->bw = TRUE;
//DEBUG_PC("Path Constraint Bw: %f", path_constraints->bwConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "cost", 4) == 0) {
path_constraints->costConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->cost = TRUE;
//DEBUG_PC("Path Constraint Cost: %f", path_constraints->costConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "latency", 7) == 0) {
path_constraints->latencyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->latency = TRUE;
//DEBUG_PC("Path Constraint Latency: %f", path_constraints->latencyConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "energy", 6) == 0) {
path_constraints->energyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->energy = TRUE;
//DEBUG_PC("Path Constraint Energy: %f", path_constraints->energyConstraint);
}
}
return path_constraints;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Creates the predecessors to keep the computed path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct pred_t *predecessors = g_malloc0 (sizeof (struct pred_t));
DEBUG_PC ("memory allocation failed\n");
exit (-1);
}
return predecessors;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief create edge
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* e = g_malloc0(sizeof(struct edges_t));
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
DEBUG_PC("Memory allocation failed\n");
exit(-1);
}
return e;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Prints the list of the predecessors for a given computed Shortest Path
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_predecessors (struct pred_t *p)
{
g_assert (p);
DEBUG_PC ("Number of Predecessors: %d", p->numPredComp);
for (gint i = 0; i < p->numPredComp; i++) {
struct pred_comp_t *pComp = &(p->predComp[i]);
DEBUG_PC ("deviceId: %s", pComp->v.nodeId);
struct edges_t *e = &(pComp->e);
DEBUG_PC("Edge[#%d] (linkId): %s", i, e->linkId);
DEBUG_PC ("\t %s[%s] ===>", e->aNodeId.nodeId, e->aEndPointId);
DEBUG_PC("\t %s[%s]", e->zNodeId.nodeId, e->zEndPointId);
DEBUG_PC("\t aTopologyId: %s", e->aTopologyId);
DEBUG_PC("\t zTopologyId: %s", e->zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Builds the list of predecessors for the request destination using the computed Shortest Path
* being stored in map
*
* @param p
* @param s
* @param map
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_predecessors (struct pred_t *p, struct service_t *s, struct map_nodes_t *map) {
g_assert (p); g_assert (s); g_assert (map);
struct nodes_t *v = create_node();
duplicate_string(v->nodeId, s->service_endpoints_id[1].device_uuid);
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
get_edge_from_map_by_node (e, v, map);
// Get u (being source of edge e)
struct nodes_t u;
duplicate_node_id (&e->aNodeId, &u);
// Add to the predecessors list
struct pred_comp_t *pred = &(p->predComp[p->numPredComp]);
duplicate_node_id (&u, &pred->v);
struct edges_t *e1 = &(pred->e);
duplicate_edge (e1, e);
p->numPredComp++;
// Back-trace edges till reaching the srcPEId
struct nodes_t* srcNode = create_node();
duplicate_string(srcNode->nodeId, s->service_endpoints_id[0].device_uuid);
while (compare_node_id (&u, srcNode) != 0) {
duplicate_node_id (&u, v);
get_edge_from_map_by_node (e, v, map);
// Get the u (being source of edge e)
duplicate_node_id (&e->aNodeId, &u);
// Get the new predecessor
struct pred_comp_t *pred = &p->predComp[p->numPredComp];
// Add to the predecessors list
duplicate_node_id (&u, &pred->v);
struct edges_t *e1 = &(pred->e);
duplicate_edge (e1, e);
p->numPredComp++;
}
print_predecessors (p);
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief It creates a struct nodes_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct nodes_t * create_node ()
{
struct nodes_t *n = g_malloc0 (sizeof (struct nodes_t));
if (n == NULL) {
DEBUG_PC ("memory allocation problem");
exit (-1);
}
return n;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief It creates a routeElement_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct routeElement_t *rE = g_malloc0 (sizeof (struct routeElement_t));
DEBUG_PC ("memory allocation problem");
exit (-1);
}
return rE;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief copy node ids
*
* @param src
* @param dst
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_node_id (struct nodes_t *src, struct nodes_t *dst) {
g_assert (src);
//DEBUG_PC ("Duplicate nodeId for %s", src->nodeId);
strcpy (dst->nodeId, src->nodeId);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief compares a pair of node Ids
*
* @param a
* @param b
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint compare_node_id (struct nodes_t *a, struct nodes_t *b) {
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
g_assert (a);
g_assert (b);
return (memcmp (&a->nodeId, b->nodeId, strlen (b->nodeId)));
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief duplicate two routeElement_t
*
* @param src
* @param dst
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_routeElement (struct routeElement_t *src, struct routeElement_t *dst)
{
g_assert (src);
g_assert (dst);
duplicate_node_id (&(src->aNodeId), &(dst->aNodeId));
duplicate_node_id (&(src->zNodeId), &(dst->zNodeId));
duplicate_string(dst->aEndPointId, src->aEndPointId);
duplicate_string(dst->zEndPointId, src->zEndPointId);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief duplicate two edges
*
* @param e1 (destination)
* @param e2 (source)
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_edge (struct edges_t *e1, struct edges_t *e2) {
duplicate_node_id (&e2->aNodeId, &e1->aNodeId);
duplicate_node_id (&e2->zNodeId, &e1->zNodeId);
//DEBUG_PC ("e->aNodeId: %s ---> e->zNodeId: %s", e1->aNodeId.nodeId, e1->zNodeId.nodeId);
duplicate_string(e1->aEndPointId, e2->aEndPointId);
duplicate_string(e1->zEndPointId, e2->zEndPointId);
duplicate_string(e1->linkId, e2->linkId);
duplicate_string(e1->interDomain_localId, e2->interDomain_localId);
duplicate_string(e1->interDomain_remoteId, e2->interDomain_remoteId);
duplicate_string(e1->aTopologyId, e2->aTopologyId);
duplicate_string(e1->zTopologyId, e2->zTopologyId);
e1->unit = e2->unit;
memcpy(&e1->totalCap, &e2->totalCap, sizeof(gdouble));
memcpy(&e1->availCap, &e2->availCap, sizeof(gdouble));
memcpy (&e1->cost, &e2->cost, sizeof (gdouble));
memcpy (&e1->delay, &e2->delay, sizeof (gdouble));
memcpy(&e1->energy, &e2->energy, sizeof(gdouble));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate path
*
* @param a - original
* @param b - copy
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path (struct compRouteOutputItem_t *a, struct compRouteOutputItem_t *b) {
g_assert (a); g_assert (b);
memcpy(&b->availCap, &a->availCap, sizeof (gdouble));
memcpy(&b->cost, &a->cost, sizeof(gdouble));
memcpy(&b->delay, &a->delay, sizeof (gdouble));
memcpy(&b->power, &a->power, sizeof(gdouble));
b->numRouteElements = a->numRouteElements;
for (gint k = 0; k < a->numRouteElements; k++) {
//DEBUG_PC ("aNodeId: %s // zNodeId: %s", a->routeElement[k].aNodeId.nodeId, a->routeElement[k].zNodeId.nodeId);
// aNodeId duplication
struct nodes_t *n1 = &(a->routeElement[k].aNodeId);
struct nodes_t *n2 = &(b->routeElement[k].aNodeId);
//zNodeId duplication
n1 = &(a->routeElement[k].zNodeId);
n2 = &(b->routeElement[k].zNodeId);
duplicate_node_id (n1, n2);
duplicate_string(b->routeElement[k].aEndPointId, a->routeElement[k].aEndPointId);
duplicate_string(b->routeElement[k].zEndPointId, a->routeElement[k].zEndPointId);
duplicate_string(b->routeElement[k].linkId, a->routeElement[k].linkId);
duplicate_string(b->routeElement[k].aTopologyId, a->routeElement[k].aTopologyId);
duplicate_string(b->routeElement[k].zTopologyId, a->routeElement[k].zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate path from compRouteOutputItem_t to path_t
*
* @param a - original
* @param b - copy
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path_t(struct compRouteOutputItem_t* a, struct path_t* b) {
g_assert(a); g_assert(b);
memcpy(&b->path_capacity.value, &a->availCap, sizeof(gdouble));
memcpy(&b->path_cost.cost_value, &a->cost, sizeof(gdouble));
memcpy(&b->path_latency.fixed_latency, &a->delay, sizeof(gdouble));
memcpy(&b->path_power.power, &a->power, sizeof(gdouble));
b->numPathLinks = a->numRouteElements;
for (gint k = 0; k < a->numRouteElements; k++) {
struct routeElement_t* rE = &(a->routeElement[k]);
struct pathLink_t* pL = &(b->pathLinks[k]);
// copy the aDeviceId and aEndpointId, zDeviceId and zEndPointId
duplicate_string(pL->aDeviceId, rE->aNodeId.nodeId);
duplicate_string(pL->zDeviceId, rE->zNodeId.nodeId);
duplicate_string(pL->aEndPointId, rE->aEndPointId);
duplicate_string(pL->zEndPointId, rE->zEndPointId);
duplicate_string(pL->topologyId.topology_uuid, rE->aTopologyId);
duplicate_string(pL->topologyId.contextId, rE->contextId);
//copy the linkId
duplicate_string(pL->linkId, rE->linkId);
pL->numLinkTopologies++;
duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->aTopologyId);
pL->numLinkTopologies++;
duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Return the index into mapN related nodeId
*
* @param nodeId
* @para mapN
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint get_map_index_by_nodeId (gchar *nodeId, struct map_nodes_t * mapN) {
gint i = 0;
for (i = 0; i < mapN->numMapNodes; i++) {
//DEBUG_PC ("i: %d; current: %s // targeted: %s", i, mapN->map[i].verticeId.nodeId, nodeId);
if (memcmp (mapN->map[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0) {
//DEBUG_PC ("Index: %d", i);
return i;
}
}
//DEBUG_PC ("Index: %d", index);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Get the edge e enabling reaching the computed v in mapNodes
*
* @param e
* @param v
* @param mapN
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_map_by_node (struct edges_t *e, struct nodes_t* v, struct map_nodes_t *mapN) {
//DEBUG_PC ("Get the Edge into map from node v: %s", v.nodeId);
// Get the edge reaching the node v from mapNodes
gint map_vIndex = get_map_index_by_nodeId (v->nodeId, mapN);
//DEBUG_PC ("aNodeId: %s --> zNodeId: %s", mapN->map[map_vIndex].predecessor.aNodeId.nodeId, mapN->map[map_vIndex].predecessor.zNodeId.nodeId);
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
struct edges_t *te = &(mapN->map[map_vIndex].predecessor);
duplicate_edge (e, te);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Get the edge from the predecessors array for a given node n
*
* @param e
* @param n
* @param predecessors
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_predecessors (struct edges_t *e, struct nodes_t* n, struct pred_t *predecessors) {
g_assert(predecessors);
DEBUG_PC ("Get edge outgoing node %s from predecessors list", n->nodeId);
//print_predecessors (predecessors);
for (gint i = 0; i < predecessors->numPredComp; i++) {
struct pred_comp_t *pred = &(predecessors->predComp[i]);
if (compare_node_id (n, &pred->v) == 0) {
// Add to the predecessors list
struct edges_t *te = &(pred->e);
DEBUG_PC("add e (linkId): %s", te->linkId);
duplicate_edge (e, te);
return;
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Construct the path using the predecessors list
*
* @param path
* @param predecessors
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_path (struct compRouteOutputItem_t *p, struct pred_t *predecessors, struct service_t *s) {
// Get the source device Id of the network connectivity service
struct nodes_t *v = create_node();
duplicate_string(v->nodeId, s->service_endpoints_id[0].device_uuid);
// Get the edge for v in predecessors
get_edge_from_predecessors (e, v, predecessors);
// Get the target for e
struct nodes_t u;
duplicate_node_id (&e->zNodeId, &u);
//DEBUG_PC ("u: %s", u.nodeId);
struct path_constraints_t* pathCons = get_path_constraints(s);
// Add route element to the path being constructed
gint k = 0;
duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
duplicate_string(p->routeElement[k].linkId, e->linkId);
duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);
p->numRouteElements++;
struct nodes_t* dst = create_node();
duplicate_string(dst->nodeId, s->service_endpoints_id[1].device_uuid);
duplicate_node_id (&u, v);
get_edge_from_predecessors (e, v, predecessors);
// Get the target u
duplicate_node_id (&e->zNodeId, &u);
// Add route element to the path being constructed
duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
duplicate_string(p->routeElement[k].linkId, e->linkId);
duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);
}
g_free(e); g_free(v); g_free(pathCons);
//DEBUG_PC ("Path is constructed");
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Print the graph for DEBUG_PCging purposes
*
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
DEBUG_PC ("================================================================");
DEBUG_PC ("=========================== GRAPH ==========================");
DEBUG_PC ("================================================================");
DEBUG_PC ("Head Vertice [%s]", g->vertices[i].verticeId.nodeId);
for (gint j = 0; j < g->vertices[i].numTargetedVertices; j++)
{
DEBUG_PC (" Tail Vertice: %s", g->vertices[i].targetedVertices[j].tVertice.nodeId);
for (gint k = 0; k < g->vertices[i].targetedVertices[j].numEdges; k++)
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
{
struct edges_t *e = &(g->vertices[i].targetedVertices[j].edges[k]);
DEBUG_PC ("%s(%s) --> %s(%s) [C: %f, Bw: %f b/s, Delay: %f ms]", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId,
e->zEndPointId, e->cost, e->availCap, e->delay);
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look for a given edge into the graph
*
* @param verticeIndex
* @param targetedVerticeIndex
* @param e
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_edge_lookup (gint verticeIndex, gint targetedVerticeIndex, struct edges_t *e, struct graph_t *g) {
gint indexEdge = -1;
for (gint j = 0; j < g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].numEdges; j++) {
struct edges_t *e2 = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].edges[j]);
if ((compare_node_id (&e->aNodeId, &e2->aNodeId) == 0) &&
(compare_node_id (&e->zNodeId, &e2->zNodeId) == 0) &&
(strcmp (e->aEndPointId, e2->aEndPointId) == 0) &&
(strcmp (e->zEndPointId, e2->zEndPointId) == 0) &&
(strcmp(e->linkId, e2->linkId) == 0)) {
DEBUG_PC ("%s (%s) --> %s (%s) [linkId: %s] FOUND in the Graph at index: %d", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId,
e->zEndPointId, e->linkId, j);
indexEdge = j;
return indexEdge;
}
}
return indexEdge;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look for a given vertice within the graph using the nodeId
*
* @param nodeId
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_vertice_lookup (gchar *nodeId, struct graph_t *g)
{
gint index = -1;
//DEBUG_PC("Searching Node: %s", nodeId);
for (gint i = 0; i < g->numVertices; i++) {
//DEBUG_PC("Checked Graph Node: %s", g->vertices[i].verticeId.nodeId);
if (memcmp (g->vertices[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0)
{
index = i;
//DEBUG_PC ("%s is found in the graph vertice [%d]", nodeId, index);
break;
}
}
return (index);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice
*
* @param nodeId
* @param vIndex
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_lookup (gint vIndex, gchar *nodeId, struct graph_t *g)
{
gint addedTargetedVerticeIndex = -1;
gint i = 0;
if (g->vertices[vIndex].numTargetedVertices == 0)
{
return (addedTargetedVerticeIndex);
}
for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
{
if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
{
DEBUG_PC ("Targeted %s reachable from %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = i;
return (addedTargetedVerticeIndex);
}
}
// not found ...
return (addedTargetedVerticeIndex);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice, if not to be added
*
* @param nodeId
* @param vIndex
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_add (gint vIndex, gchar *nodeId, struct graph_t *g)
{
gint addedTargetedVerticeIndex = -1;
gint i = 0;
if (g->vertices[vIndex].numTargetedVertices == 0)
{
//DEBUG_PC ("targeted vertice %s being reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = 0;
return (addedTargetedVerticeIndex);
}
for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
{
if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
{
//DEBUG_PC ("Targeted vertice %s is already considered in the reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = -1;
return (addedTargetedVerticeIndex);
}
}
// It is not found, next to be added at i position
addedTargetedVerticeIndex = i;
return (addedTargetedVerticeIndex);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove edge from the graph
*
* @param g
* @param e
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
void remove_edge_from_graph (struct graph_t *g, struct edges_t *e) {
// Find the ingress vertice into the graph
DEBUG_PC ("Removing from Graph %s[%s]) ---> %s[%s] (linkId: %s)", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, e->aEndPointId, e->linkId);
gint verticeIndex = -1;
verticeIndex = graph_vertice_lookup (e->aNodeId.nodeId, g);
if (verticeIndex == -1) {
DEBUG_PC ("Edge w/ %s is NOT in the Graph!!", e->aNodeId.nodeId);
return;
}
// Find the targeted vertice from vertice Id
gint targetedVerticeIndex = -1;
targetedVerticeIndex = graph_targeted_vertice_lookup (verticeIndex, e->zNodeId.nodeId, g);
if (targetedVerticeIndex == -1) {
DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
return;
//DEBUG_PC ("%s --> %s found in the Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);
// Get the edge position
gint edgeIndex = -1;
edgeIndex = graph_edge_lookup (verticeIndex, targetedVerticeIndex, e, g);
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
return;
}
//DEBUG_PC ("%s --> %s FOUND in Graph w/ edgeIndex: %d", e->aNodeId.nodeId, e->zNodeId.nodeId, edgeIndex);
// Remove the edge
//DEBUG_PC ("Start Removing %s --> %s from Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);
struct targetNodes_t *v = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex]);
for (gint j = edgeIndex; j < v->numEdges; j++) {
struct edges_t *e1 = &(v->edges[j]);
struct edges_t *e2 = &(v->edges[j+1]);
duplicate_edge (e1, e2);
}
v->numEdges --;
DEBUG_PC ("Number of Edges between %s and %s is %d", e->aNodeId.nodeId, e->zNodeId.nodeId, v->numEdges);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief create the pointer for keeping a set of the paths (struct compRouteOutput_t)
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct path_set_t * p = g_malloc0 (sizeof (struct path_set_t));
DEBUG_PC ("Memory allocation problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove the path set
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2021
*/
/////////////////////////////////////////////////////////////////////////////////////////
void remove_path_set(struct path_set_t* p) {
g_assert(p); g_free(p);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Create map of nodes to handle the path computation
*
* @param mapN
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_map_node (struct map_nodes_t *mapN, struct graph_t *g) {
//DEBUG_PC ("Construction of the Map of Nodes");
duplicate_node_id (&g->vertices[i].verticeId, &mapN->map[i].verticeId);
mapN->map[i].distance = INFINITY_COST;
mapN->map[i].avaiBandwidth = 0.0;
mapN->map[i].latency = INFINITY_COST;
mapN->numMapNodes++;
}
//DEBUG_PC ("mapNodes formed by %d Nodes", mapN->numMapNodes);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for path of struct compRouteOutputList_t *
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputList_t *p = g_malloc0 (sizeof (struct compRouteOutputList_t));
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return p;
}
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Copy all the attributes defining a path
*
* @param dst_path
* @param src_path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_path(struct path_t* dst_path, struct path_t* src_path) {
g_assert(dst_path);
g_assert(src_path);
// Path capacity
dst_path->path_capacity.unit = src_path->path_capacity.unit;
memcpy(&dst_path->path_capacity.value, &src_path->path_capacity.value, sizeof(gdouble));
// Path latency
memcpy(&dst_path->path_latency.fixed_latency, &src_path->path_latency.fixed_latency, sizeof(gdouble));
// Path cost
duplicate_string(dst_path->path_cost.cost_name, src_path->path_cost.cost_name);
memcpy(&dst_path->path_cost.cost_value, &src_path->path_cost.cost_value, sizeof(gdouble));
memcpy(&dst_path->path_cost.cost_algorithm, &src_path->path_cost.cost_algorithm, sizeof(gdouble));
// Path links
dst_path->numPathLinks = src_path->numPathLinks;
for (gint i = 0; i < dst_path->numPathLinks; i++) {
struct pathLink_t* dPathLink = &(dst_path->pathLinks[i]);
struct pathLink_t* sPathLink = &(src_path->pathLinks[i]);
duplicate_string(dPathLink->linkId, sPathLink->linkId);
duplicate_string(dPathLink->aDeviceId, sPathLink->aDeviceId);
duplicate_string(dPathLink->zDeviceId, sPathLink->zDeviceId);
duplicate_string(dPathLink->aEndPointId, sPathLink->aEndPointId);
duplicate_string(dPathLink->zEndPointId, sPathLink->zEndPointId);
duplicate_string(dPathLink->topologyId.contextId, sPathLink->topologyId.contextId);
duplicate_string(dPathLink->topologyId.topology_uuid, sPathLink->topologyId.topology_uuid);
dPathLink->numLinkTopologies = sPathLink->numLinkTopologies;
for (gint j = 0; j < dPathLink->numLinkTopologies; j++) {
struct linkTopology_t* dLinkTop = &(dPathLink->linkTopologies[j]);
struct linkTopology_t* sLinkTop = &(sPathLink->linkTopologies[j]);
duplicate_string(dLinkTop->topologyId, sLinkTop->topologyId);
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate the route output instance
*
* @param dst_ro
* @param src_ro
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_compRouteOuput(struct compRouteOutput_t* dst_ro, struct compRouteOutput_t* src_ro) {
g_assert(dst_ro); g_assert(src_ro);
// Copy the serviceId
copy_service_id(&dst_ro->serviceId, &src_ro->serviceId);
dst_ro->num_service_endpoints_id = src_ro->num_service_endpoints_id;
for (gint j = 0; j < dst_ro->num_service_endpoints_id; j++) {
struct service_endpoints_id_t* iEp = &(src_ro->service_endpoints_id[j]);
struct service_endpoints_id_t* oEp = &(dst_ro->service_endpoints_id[j]);
copy_service_endpoint_id(oEp, iEp);
}
// Copy paths
dst_ro->numPaths = src_ro->numPaths;
for (gint j = 0; j < dst_ro->numPaths; j++) {
struct path_t* dst_path = &(dst_ro->paths[j]);
struct path_t* src_path = &(src_ro->paths[j]);
copy_path(dst_path, src_path);
}
// copy no path issue value
dst_ro->noPathIssue = src_ro->noPathIssue;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate the computation route output list
*
* @param dst
* @param src
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_route_list(struct compRouteOutputList_t* dst, struct compRouteOutputList_t* src) {
g_assert(src); g_assert(dst);
dst->numCompRouteConnList = src->numCompRouteConnList;
dst->compRouteOK = src->compRouteOK;
memcpy(&dst->compRouteConnAvBandwidth, &src->compRouteConnAvBandwidth, sizeof(gdouble));
memcpy(&dst->compRouteConnAvPathLength, &src->compRouteConnAvPathLength, sizeof(gdouble));
for (gint i = 0; i < src->numCompRouteConnList; i++) {
struct compRouteOutput_t* src_ro = &(src->compRouteConnection[i]);
struct compRouteOutput_t* dst_ro = &(dst->compRouteConnection[i]);
duplicate_compRouteOuput(dst_ro, src_ro);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for path of struct compRouteOutputItem_t *
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputItem_t *p = g_malloc0 (sizeof (struct compRouteOutputItem_t));
if (p == NULL) {
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sort the set of paths the AvailBw, Cost and Delay
*
* @params setP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void sort_path_set(struct path_set_t* setP, guint args) {
g_assert(setP);
// Sort the paths contained in setP by:
// 1st Criteria: The path cost (maybe bound to link distance)
// 2nd Criteria: The consumed path power
// 3nd Criteria: The path latency
// 3rd Criteria: The available Bw
float epsilon = 0.1;
for (gint i = 0; i < setP->numPaths; i++) {
for (gint j = 0; j < (setP->numPaths - i - 1); j++) {
struct compRouteOutputItem_t* path1 = &setP->paths[j];
struct compRouteOutputItem_t* path2 = &setP->paths[j + 1];
struct compRouteOutputItem_t* pathTmp = create_path_item();
//////////////////////// Criterias ////////////////////////////////////////
// 1st Criteria (Cost)
if (path2->cost < path1->cost) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
if (path2->cost == path1->cost) {
// 2nd Criteria (Energy)
if (args & ENERGY_EFFICIENT_ARGUMENT) {
if (path2->power < path1->power) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else { // path1->power < path2->power
g_free(pathTmp);
continue;
}
}
else { // No enery efficient argument
// 3rd Criteria (latency)
if (path2->delay < path1->delay) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
g_free(pathTmp);
continue;
}
else { // path1->delay == path2->delay
// 4th Criteria (available bw)
if (path2->availCap > path1->availCap) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else {
g_free(pathTmp);
continue;
}
}
}
else { // path1->cost < path2->cost
g_free(pathTmp);
continue;
}
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove first element from the path sets
*
* @params setP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void pop_front_path_set (struct path_set_t *setP) {
for (gint j = 0; j < setP->numPaths - 1; j++) {
struct compRouteOutputItem_t *path1 = &setP->paths[j];
struct compRouteOutputItem_t *path2 = &setP->paths[j+1];
duplicate_path (path2, path1);
}
setP->numPaths--;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add routeElement to the back of the path
*
* @param rE
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void add_routeElement_path_back (struct routeElement_t *rE, struct compRouteOutputItem_t *p) {
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
//DEBUG_PC ("p->numRouteElements: %d", p->numRouteElements);
p->numRouteElements++;
gint index = p->numRouteElements - 1;
struct nodes_t *pn = &(p->routeElement[index].aNodeId);
struct nodes_t *rEn = &(rE->aNodeId);
// duplicate aNodeId
duplicate_node_id (rEn, pn);
pn = &(p->routeElement[index].zNodeId);
rEn = &(rE->zNodeId);
duplicate_node_id (rEn, pn);
duplicate_string(p->routeElement[index].aEndPointId, rE->aEndPointId);
duplicate_string(p->routeElement[index].zEndPointId, rE->zEndPointId);
duplicate_string(p->routeElement[index].linkId, rE->linkId);
duplicate_string(p->routeElement[index].aTopologyId, rE->aTopologyId);
duplicate_string(p->routeElement[index].zTopologyId, rE->zTopologyId);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief This function compares ap and rootPath. If all the links are equal between both ap and rootPath till the sN, then the link from sN to next node
* ap is returned
*
* @params ap
* @params p
* @params sN
* @params e
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gboolean matching_path_rootPath (struct compRouteOutputItem_t *ap, struct compRouteOutputItem_t *rootPath, struct nodes_t *sN, struct edges_t *e) {
gint j = 0;
gboolean ret = FALSE;
while ((j < ap->numRouteElements) && (j < rootPath->numRouteElements)) {
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) &&
//(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0) &&
(memcmp (sN->nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0)) {
duplicate_node_id (&ap->routeElement[j].aNodeId, &e->aNodeId);
duplicate_node_id (&ap->routeElement[j].zNodeId, &e->zNodeId);
duplicate_string(e->aEndPointId, ap->routeElement[j].aEndPointId);
duplicate_string(e->zEndPointId, ap->routeElement[j].zEndPointId);
duplicate_string(e->linkId, ap->routeElement[j].linkId);
return TRUE;
}
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) &&
(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) == 0)) {
j++;
continue;
}
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) != 0) ||
(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0)) {
//DEBUG_PC ("ap and rootPath not in the same path");
return ret;
}
}
return ret;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief This function is used to modify the graph to be used for running the subsequent SP computations acording to the YEN algorithm principles
*
* @params g
* @params A
* @params rootPath
* @params spurNode
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void modify_targeted_graph (struct graph_t *g, struct path_set_t *A, struct compRouteOutputItem_t * rootPath, struct nodes_t * spurNode) {
//DEBUG_PC ("Modify the Targeted graph according to the Yen algorithm principles");
struct compRouteOutputItem_t *ap = &A->paths[j];
gboolean ret = FALSE;
ret = matching_path_rootPath (ap, rootPath, spurNode, e);
if (ret == TRUE) {
DEBUG_PC ("Removal %s[%s] --> %s[%s] from the graph", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, e->aEndPointId);
remove_edge_from_graph (g, e);
//DEBUG_PC ("Print Resulting Graph");
g_free (e);
}
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
g_free (e);
continue;
}
}
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Supporting fucntion to Check if a nodeId is already in the items of a given GList
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint find_nodeId (gconstpointer data, gconstpointer userdata)
{
/** check values */
g_assert(data != NULL);
g_assert(userdata != NULL);
struct nodeItem_t *SNodeId = (struct nodeItem_t *)data;
guchar * nodeId = (guchar *)userdata;
//DEBUG_PC ("SNodeId (%s) nodeId (%s)", SNodeId->node.nodeId, nodeId);
if (!memcmp(SNodeId->node.nodeId, nodeId, strlen (SNodeId->node.nodeId)))
{
return (0);
}
return -1;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Explores the link between u and v
*
* @param u
* @param v
* @param g
* @param s
* @param S
* @param Q
* @param mapNodes
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint check_link (struct nodeItem_t *u, gint indexGraphU, gint indexGraphV, struct graph_t *g,
struct service_t *s, GList **S, GList **Q, struct map_nodes_t *mapNodes,
guint arg) {
g_assert(g); g_assert(s); g_assert(mapNodes);
struct targetNodes_t *v = &(g->vertices[indexGraphU].targetedVertices[indexGraphV]);
DEBUG_PC("Explored Link %s => %s)", u->node.nodeId, v->tVertice.nodeId);
//DEBUG_PC("\t %s => %s", u->node.nodeId, v->tVertice.nodeId);
// v already explored in S? then, discard it
GList *found = g_list_find_custom (*S, v->tVertice.nodeId, find_nodeId);
if (found != NULL) {
return 0;
}
// Get the set of constraints imposed by the service
struct path_constraints_t* path_constraints = get_path_constraints(s);
gdouble distance_through_u = INFINITY_COST ,latency_through_u = INFINITY_COST, power_through_u = INFINITY_COST;
gint i = 0, foundAvailBw = 0;
// BANDWIDTH requirement to be fulfilled on EDGE u->v
gdouble edgeAvailBw = 0.0, edgeTotalBw = 0.0;
for (i = 0; i < v->numEdges; i++) {
struct edges_t *e = &(v->edges[i]);
memcpy (&edgeAvailBw, &(e->availCap), sizeof (gdouble));
memcpy(&edgeTotalBw, &(e->totalCap), sizeof(gdouble));
DEBUG_PC("EDGE %s[%s] => %s[%s]", u->node.nodeId, e->aEndPointId, v->tVertice.nodeId, e->zEndPointId);
//DEBUG_PC ("\t %s[%s] =>", u->node.nodeId, e->aEndPointId);
//DEBUG_PC("\t => %s[%s]", v->tVertice.nodeId, e->zEndPointId);
DEBUG_PC("\t AvailBw: %f, TotalBw: %f", edgeAvailBw, edgeTotalBw);
// Check Service Bw constraint
if ((path_constraints->bw == TRUE) && (edgeAvailBw < path_constraints->bwConstraint))
continue;
else {
foundAvailBw = 1;
break;
// BW constraint NOT MET, then DISCARD edge
if ((path_constraints->bw == TRUE) && (foundAvailBw == 0)) {
DEBUG_PC ("AvailBw: %f < path_constraint: %f -- Discard Edge", edgeAvailBw, path_constraints->bwConstraint);
g_free(path_constraints);
return 0;
}
gint indexEdge = i; // get the index for the explored edge
// Update distance, latency and availBw through u to reach v
gint map_uIndex = get_map_index_by_nodeId (u->node.nodeId, mapNodes);
struct map_t *u_map = &mapNodes->map[map_uIndex];
distance_through_u = u_map->distance + v->edges[indexEdge].cost;
latency_through_u = u_map->latency + v->edges[indexEdge].delay;
// Consumed power at v through u is the sum
// 1. Power from src to u
// 2. Power-idle at node u
// 3. power consumed over the edge between u and v, i.e. energy*usedBw
power_through_u = u_map->power + g->vertices[indexGraphU].power_idle + ((edgeTotalBw - edgeAvailBw + path_constraints->bwConstraint) * (v->edges[indexEdge].energy));
gdouble availBw_through_u = 0.0;
// ingress endpoint (u) is the src of the request
if (strcmp (u->node.nodeId, s->service_endpoints_id[0].device_uuid) == 0) {
//DEBUG_PC ("AvailBw %f on %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);
memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));
}
else {
// Get the minimum available bandwidth between the src-->u and the new added edge u-->v
//DEBUG_PC ("Current AvailBw: %f from src to %s", u_map->avaiBandwidth, u->node.nodeId);
//DEBUG_PC ("AvailBw: %f %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);
if (u_map->avaiBandwidth <= edgeAvailBw) {
memcpy (&availBw_through_u, &u_map->avaiBandwidth, sizeof (gdouble));
}
else {
memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));
}
}
// Relax the link according to the pathCost, latency, and energy
gint map_vIndex = get_map_index_by_nodeId (v->tVertice.nodeId, mapNodes);
struct map_t *v_map = &mapNodes->map[map_vIndex];
// If cost dist (u, v) > dist (src, v) relax the link
if (distance_through_u > v_map->distance) {
//DEBUG_PC ("dist(src, u) + dist(u, v): %f > dist (src, v): %f --> Discard Link", distance_through_u, v_map->distance);
return 0;
}
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
// If energy consumption optimization is requested
if (arg & ENERGY_EFFICIENT_ARGUMENT) {
if (distance_through_u == v_map->distance) {
if (power_through_u > v_map->power) {
DEBUG_PC("Energy (src -> u + u -> v: %f (Watts) >Energy (src, v): %f (Watts)--> DISCARD LINK", power_through_u, v_map->power);
return 0;
}
// same energy consumption, consider latency
if ((power_through_u == v_map->power) && (latency_through_u > v_map->latency)) {
return 0;
}
if ((power_through_u == v_map->power) && (latency_through_u == v_map->latency) && (availBw_through_u < v_map->avaiBandwidth)) {
return 0;
}
}
} // No optimization, rely on latency and available e2e bandwidth
else {
// If dist (src, u) + dist (u, v) = current dist(src, v), then use the latency as discarding criteria
if ((distance_through_u == v_map->distance) && (latency_through_u > v_map->latency)) {
//DEBUG_PC ("dist(src, u) + dist(u,v) = current dist(src, v), but latency (src,u) + latency (u, v) > current latency (src, v)");
return 0;
}
// If dist (src, u) + dist (u,v) == current dist(src, v) AND latency (src, u) + latency (u, v) == current latency (src, v), the available bandwidth is the criteria
if ((distance_through_u == v_map->distance) && (latency_through_u == v_map->latency) && (availBw_through_u < v_map->avaiBandwidth)) {
return 0;
}
}
DEBUG_PC ("%s --> %s Relaxed", u->node.nodeId, v->tVertice.nodeId);
DEBUG_PC ("\t AvailBw: %f Mb/s, Cost: %f, Latency: %f ms, Energy: %f Watts", availBw_through_u, distance_through_u, latency_through_u, power_through_u);
// Update Q list --
struct nodeItem_t *nodeItem = g_malloc0 (sizeof (struct nodeItem_t));
if (nodeItem == NULL) {
DEBUG_PC ("memory allocation failed\n");
exit (-1);
}
nodeItem->distance = distance_through_u;
memcpy(&nodeItem->distance, &distance_through_u, sizeof(gdouble));
memcpy(&nodeItem->latency, &latency_through_u, sizeof(gdouble));
memcpy(&nodeItem->power, &power_through_u, sizeof(gdouble));
duplicate_node_id (&v->tVertice, &nodeItem->node);
// add node to the Q list
if (arg & ENERGY_EFFICIENT_ARGUMENT) {
*Q = g_list_insert_sorted(*Q, nodeItem, sort_by_energy);
}
else
*Q = g_list_insert_sorted (*Q, nodeItem, sort_by_distance);
v_map->distance = distance_through_u;
memcpy(&v_map->distance, &distance_through_u, sizeof(gdouble));
memcpy (&v_map->avaiBandwidth, &availBw_through_u, sizeof (gdouble));
memcpy (&v_map->latency, &latency_through_u, sizeof (gdouble));
memcpy(&v_map->power, &power_through_u, sizeof(gdouble));
// Duplicate the predecessor edge into the mapNodes
struct edges_t *e1 = &(v_map->predecessor);
struct edges_t *e2 = &(v->edges[indexEdge]);
DEBUG_PC ("u->v Edge: %s(%s) --> %s(%s)", e2->aNodeId.nodeId, e2->aEndPointId, e2->zNodeId.nodeId, e2->zEndPointId);
DEBUG_PC("v-pred zTopology: %s", e2->zTopologyId);
// Check whether v is dstPEId
//DEBUG_PC ("Targeted dstId: %s", s->service_endpoints_id[1].device_uuid);
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
//DEBUG_PC ("nodeId added to the map: %s", v_map->verticeId.nodeId);
//DEBUG_PC ("Q Length: %d", g_list_length(*Q));
g_free(path_constraints);
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check the feasability of a path wrt the constraints imposed by the request in terms of latency
*
* @param s
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gboolean check_computed_path_feasability (struct service_t *s, struct compRouteOutputItem_t* p) {
float epsilon = 0.0000001;
struct path_constraints_t* pathCons = get_path_constraints(s);
gboolean ret = TRUE;
if (pathCons->latency == TRUE) {
if ((pathCons->latencyConstraint - p->delay > 0.0) || (fabs(pathCons->latencyConstraint - p->delay) < epsilon)) {
DEBUG_PC("Computed Path (latency: %f) is feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
}
else {
DEBUG_PC("Computed Path (latency: %f) is NOT feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
g_free(pathCons);
return FALSE;
}
}
g_free(pathCons);
return ret;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sorting the GList Q items by distance
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint sort_by_distance (gconstpointer a, gconstpointer b) {
//DEBUG_PC ("sort by distance a and b");
g_assert(a != NULL);
g_assert(b != NULL);
//DEBUG_PC ("sort by distance a and b");
struct nodeItem_t *node1 = (struct nodeItem_t *)a;
struct nodeItem_t *node2 = (struct nodeItem_t *)b;
g_assert (node1);
g_assert (node2);
//DEBUG_PC ("a->distance %u; b->distance %u", node1->distance, node2->distance);
//DEBUG_PC("a->latency: %f; b->latency: %f", node1->latency, node2->latency);
//1st criteria, sorting by lowest distance
if (node1->distance > node2->distance)
return 1;
else if (node1->distance < node2->distance)
return 0;
if (node1->latency > node2->latency)
return 1;
else if (node1->latency <= node2->latency)
return 0;
}
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sorting the GList Q items by distance
*
* @param a
* @param b
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint sort_by_energy(gconstpointer a, gconstpointer b) {
g_assert(a != NULL);
g_assert(b != NULL);
//DEBUG_PC ("sort by distance a and b");
struct nodeItem_t* node1 = (struct nodeItem_t*)a;
struct nodeItem_t* node2 = (struct nodeItem_t*)b;
g_assert(node1);
g_assert(node2);
//1st criteria: sorting by lowest distance
if (node1->distance > node2->distance)
return 1;
if (node1->distance < node2->distance)
return 0;
// 2nd Criteria: sorting by the lowest energy
if (node1->power > node2->power)
return 1;
if (node1->power < node1->power)
return 0;
// 3rd Criteria: by the latency
if (node1->latency > node2->latency)
return 1;
if (node1->latency <= node2->latency)
return 0;
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for graph
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct graph_t * create_graph () {
struct graph_t * g = g_malloc0 (sizeof (struct graph_t));
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return g;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for mapNodes
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct map_nodes_t * create_map_node () {
struct map_nodes_t * mN = g_malloc0 (sizeof (struct map_nodes_t));
DEBUG_PC ("Memory allocation failed");
exit (-1);
}
return mN;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look up for the service in the servieList bound to a serviceUUID
*
* @params serviceUUID
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct service_t* get_service_for_computed_path(gchar* serviceUUID) {
gint i = 0;
for(GList *listnode = g_list_first(serviceList);
listnode;
listnode = g_list_next(listnode), i++) {
struct service_t* s = (struct service_t*)(listnode->data);
if (strcmp(s->serviceId.service_uuid, serviceUUID) == 0)
return s;
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the service type
*
* @param type
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_service_type(guint type) {
switch (type) {
case SERVICE_TYPE_UNKNOWN:
DEBUG_PC("Service Type UNKNOWN");
break;
case SERVICE_TYPE_L3NM:
DEBUG_PC("Service Type L3NM");
break;
case SERVICE_TYPE_L2NM:
DEBUG_PC("Service Type L2NM");
break;
case SERVICE_TYPE_TAPI:
DEBUG_PC("Service Type L2NM");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the port direction
*
* @param direction
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
switch (direction) {
case LINK_PORT_DIRECTION_BIDIRECTIONAL:
//DEBUG_PC("Bidirectional Port Direction");
break;
case LINK_PORT_DIRECTION_INPUT:
//DEBUG_PC("Input Port Direction");
break;
case LINK_PORT_DIRECTION_OUTPUT:
//DEBUG_PC("Output Port Direction");
break;
case LINK_PORT_DIRECTION_UNKNOWN:
//DEBUG_PC("Unknown Port Direction");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the port termination direction
*
* @param direction
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
switch (direction) {
case TERMINATION_DIRECTION_BIDIRECTIONAL:
//DEBUG_PC("Bidirectional Termination Direction");
break;
case TERMINATION_DIRECTION_SINK:
//DEBUG_PC("Input Termination Direction");
break;
case TERMINATION_DIRECTION_SOURCE:
//DEBUG_PC("Output Termination Direction");
break;
case TERMINATION_DIRECTION_UNKNOWN:
//DEBUG_PC("Unknown Termination Direction");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the termination state
*
* @param state
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_termination_state(guint state)
{
switch (state) {
case TERMINATION_STATE_CAN_NEVER_TERMINATE:
//DEBUG_PC("Can never Terminate");
break;
case TERMINATION_STATE_NOT_TERMINATED:
DEBUG_PC("Not terminated");
break;
case TERMINATION_STATE_TERMINATED_SERVER_TO_CLIENT_FLOW:
DEBUG_PC("Terminated server to client flow");
break;
case TERMINATION_STATE_TERMINATED_CLIENT_TO_SERVER_FLOW:
DEBUG_PC("Terminated client to server flow");
break;
case TERMINATION_STATE_TERMINATED_BIDIRECTIONAL:
//DEBUG_PC("Terminated bidirectional");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the capacity unit
*
* @param unit
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_capacity_unit(guint unit) {
switch (unit) {
case CAPACITY_UNIT_TB:
DEBUG_PC("Unit in TB");
break;
case CAPACITY_UNIT_TBPS:
DEBUG_PC("Unit in TB/s");
break;
case CAPACITY_UNIT_GB:
DEBUG_PC("Unit in GB");
break;
case CAPACITY_UNIT_GBPS:
DEBUG_PC("Unit in GB/s");
break;
case CAPACITY_UNIT_MB:
DEBUG_PC("Unit in MB");
break;
case CAPACITY_UNIT_MBPS:
//DEBUG_PC("Unit in MB/s");
break;
case CAPACITY_UNIT_KB:
DEBUG_PC("Unit in KB");
break;
case CAPACITY_UNIT_KBPS:
DEBUG_PC("Unit in KB/s");
break;
case CAPACITY_UNIT_GHZ:
DEBUG_PC("Unit in GHz");
break;
case CAPACITY_UNIT_MHZ:
DEBUG_PC("Unit in MHz");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the link forwarding direction
*
* @param linkFwDir
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_link_forwarding_direction(guint linkFwDir) {
switch (linkFwDir) {
case LINK_FORWARDING_DIRECTION_BIDIRECTIONAL:
DEBUG_PC("BIDIRECTIONAL LINK FORWARDING DIRECTION");
break;
case LINK_FORWARDING_DIRECTION_UNIDIRECTIONAL:
DEBUG_PC("UNIDIRECTIONAL LINK FORWARDING DIRECTION");
break;
case LINK_FORWARDING_DIRECTION_UNKNOWN:
DEBUG_PC("UNKNOWN LINK FORWARDING DIRECTION");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Search a specific contextUuid element into the contextSet
*
* @param contextUuid
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct context_t* find_contextId_in_set(gchar* contextUuid, GList** set) {
//DEBUG_PC("Checking if contextId: %s in in the ContextSet??", contextUuid);
gint i = 0;
for (GList *ln = g_list_first(*set);
ln;
ln = g_list_next(ln)){
struct context_t* c = (struct context_t*)(ln->data);
//DEBUG_PC("Context Item [%d] Id: %s", i, c->contextId);
if (strcmp(contextUuid, c->contextId) == 0) {
//DEBUG_PC("contextId: %s is FOUND in the ContextSet_List", contextUuid);
return c;
}
}
//DEBUG_PC("contextId: %s NOT FOUND in the ContextSet_List", contextUuid);
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add a specific context uuid into the context set
*
* @param contextUuid
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct context_t* add_contextId_in_set(gchar *contextUuid, GList** set) {
struct context_t* c = g_malloc0(sizeof(struct context_t));
if (c == NULL) {
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
duplicate_string(c->contextId, contextUuid);
// Add the context into the context set
//DEBUG_PC("Adding ContextId: %s", contextUuid);
//DEBUG_PC(" (BEFORE ADDING) Context Set Length: %d", g_list_length(*set));
*set = g_list_append(*set, c);
//DEBUG_PC(" (AFTER ADDING) Context Set Length: %d", g_list_length(*set));
return c;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Find a vertex in a specific graph
*
* @param contextUuid
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* find_vertex_in_graph_context(struct graph_t *g, gchar* deviceId) {
struct vertices_t* v = &(g->vertices[i]);
if (strcmp(v->verticeId.nodeId, deviceId) == 0) {
return v;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Adding a deviceId into a graph
*
* @param g
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* add_vertex_in_graph(struct graph_t* g, struct device_t *d) {
g->numVertices++;
struct vertices_t* v = &(g->vertices[g->numVertices - 1]);
duplicate_string(v->verticeId.nodeId, d->deviceId);
memcpy(&v->power_idle, &d->power_idle, sizeof(gdouble));
return v;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Construct the graphs (vertices and edges) bound to every individual context
*
* @param cSet
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_deviceList(GList** cSet, gint activeFlag) {
// Check every device their endpoints
for (GList* listnode = g_list_first(deviceList);
listnode;
listnode = g_list_next(listnode)) {
struct device_t* d = (struct device_t*)(listnode->data);
//DEBUG_PC("Exploring DeviceId: %s", d->deviceId);
if ((activeFlag == 1) && (d->operational_status != 2)) {
// it is only considered devices with operational status enabled, i.e., set to 2
continue;
}
// Check the associated endPoints
for (gint j = 0; j < d->numEndPoints; j++) {
struct endPoint_t* eP = &(d->endPoints[j]);
// Get endPointId (topology, context, device Id and endpoint uuid)
struct endPointId_t* ePid = &(eP->endPointId); //end point id
//DEBUG_PC(" EndPointId: %s || Type: %s", eP->endPointId.endpoint_uuid, d->deviceType);
//DEBUG_PC(" TopologyId: %s || ContextId: %s", eP->endPointId.topology_id.topology_uuid, eP->endPointId.topology_id.contextId);
// Add contextId in ContextSet and the deviceId (+endpoint) into the vertex set
struct context_t *c = find_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
if (c == NULL) {
DEBUG_PC(" contextUuid: %s MUST BE ADDED to ContextSet", eP->endPointId.topology_id.contextId);
c = add_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
}
// Check if the deviceId and endPointUuid are already considered in the graph of the context c
struct vertices_t* v = find_vertex_in_graph_context(&c->g, d->deviceId);
if (v == NULL) {
//DEBUG_PC(" deviceId: %s MUST BE ADDED to the Context Graph", d->deviceId);
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
}
}
}
//print_contextSet(cSet);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Determine whether a deviceId is in the targetNode list of a specific vertex v
*
* @param v
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct targetNodes_t* find_targeted_vertex_in_graph_context(struct vertices_t* v, gchar *deviceId) {
for (gint k = 0; k < v->numTargetedVertices; k++) {
struct targetNodes_t* w = &(v->targetedVertices[k]);
if (strcmp(w->tVertice.nodeId, deviceId) == 0) {
return w;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add a deviceId a targetNode of a specific vertex v
*
* @param v
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
Loading
Loading full blame...