Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
////////////////////////////////////////////////////////////////////////////////////////
/**
* # Copyright 2022 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA) www.cttc.es
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* Author: CTTC/CERCA PONS RU Ricardo Martínez (ricardo.martinez@cttc.es)
*/
/////////////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <glib.h>
#include <sys/time.h>
#include <ctype.h>
#include <strings.h>
#include <time.h>
#include <math.h>
#include <fcntl.h>
#include <uuid/uuid.h>
#include <errno.h>
#include "pathComp_log.h"
#include "pathComp.h"
#include "pathComp_tools.h"
gint numPathCompIntents = 0; // number of events triggering the path computation
//gint numSuccesPathComp = 0; // number of events resulting in succesfully path computations fulfilling the constraints
struct timeval total_path_comp_time;
gdouble totalReqBw = 0.0;
gdouble totalServedBw = 0.0;
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function for time processing
*
* @param a
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
struct timeval tv_adjust (struct timeval a) {
while (a.tv_usec >= 1000000) {
a.tv_usec -= 1000000;
a.tv_sec++;
}
while (a.tv_usec < 0) {
a.tv_usec += 1000000;
a.tv_sec--;
}
return a;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief friendly function to copy safely strings
*
* @param dst
* @param src
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
////////////////////////////////////////////////////////////////////////////////////////
void duplicate_string(gchar* dst, gchar* src) {
g_assert(dst);
g_assert(src);
strcpy(dst, src);
dst[strlen(dst)] = '\0';
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to print the computed the path
*
* @param path
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path (struct compRouteOutputItem_t *p) {
g_assert(p);
DEBUG_PC ("=========== COMPUTED PATH =======================");
DEBUG_PC ("Path Avail. Bw: %f, E2E Path Latency: %f, Path Cost: %f", p->availCap, p->delay, p->cost);
for (gint k = 0; k < p->numRouteElements; k++) {
DEBUG_PC ("aNodeId: %s (%s) --> zNodeId: %s (%s)", p->routeElement[k].aNodeId.nodeId, p->routeElement[k].aEndPointId,
p->routeElement[k].zNodeId.nodeId, p->routeElement[k].zEndPointId);
DEBUG_PC("linkId: %s", p->routeElement[k].linkId);
DEBUG_PC("aTopologyId: %s", p->routeElement[k].aTopologyId);
DEBUG_PC("zTopologyId: %s", p->routeElement[k].zTopologyId);
}
DEBUG_PC ("==================================================================");
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to print the output path formed by link Ids
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path_t(struct path_t* p) {
g_assert(p);
DEBUG_PC(" ============ COMPUTED OUTPUT PATH =================");
DEBUG_PC("Path Avail Capacity: %f, Cost: %f, Latency: %f", p->path_capacity.value,
p->path_cost.cost_value, p->path_latency.fixed_latency);
DEBUG_PC("number of links of path %d", p->numPathLinks);
for (gint k = 0; k < p->numPathLinks; k++) {
DEBUG_PC("Link: %s", p->pathLinks[k].linkId);
for (gint l = 0; l < p->pathLinks[k].numLinkTopologies; l++) {
DEBUG_PC("end Link [%d] TopologyId: %s", l, p->pathLinks[k].linkTopologies[l].topologyId);
DEBUG_PC(" ContextId: %s", p->pathLinks[k].topologyId.contextId);
DEBUG_PC(" TopologyUUid: %s", p->pathLinks[k].topologyId.topology_uuid);
DEBUG_PC(" aDeviceId: %s", p->pathLinks[k].aDeviceId);
DEBUG_PC(" aEndpointId: %s", p->pathLinks[k].aEndPointId);
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Returns the char (36 bytes) format of a uuid
*
* @param uuid
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gchar* get_uuid_char(uuid_t uuid) {
gchar* uuidChar = g_malloc0(16); // uuid has 36 chars
if (uuidChar == NULL) {
DEBUG_PC("Memory Allocation failure");
exit(-1);
}
uuid_unparse(uuid, (char *)uuidChar);
return uuidChar;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Makes a copy of the service identifier (including the context)
*
* @param o
* @param i
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_service_id(struct serviceId_t* o, struct serviceId_t* i) {
g_assert(o);
g_assert(i);
memcpy(o->contextId, i->contextId, sizeof(i->contextId));
memcpy(o->service_uuid, i->service_uuid, sizeof(i->service_uuid));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Makes a copy of the service endpoint identifier (including the topology (contect and topology id), device and endpoint (port))
*
* @param oEp
* @param iEp
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void copy_service_endpoint_id(struct service_endpoints_id_t* oEp, struct service_endpoints_id_t* iEp) {
g_assert(oEp);
g_assert(iEp);
// copy topology information
memcpy(oEp->topology_id.contextId, iEp->topology_id.contextId, sizeof(iEp->topology_id.contextId));
memcpy(oEp->topology_id.topology_uuid, iEp->topology_id.topology_uuid, sizeof(iEp->topology_id.topology_uuid));
// copy the endpoint
memcpy(oEp->device_uuid, iEp->device_uuid, sizeof(iEp->device_uuid));
memcpy(oEp->endpoint_uuid, iEp->endpoint_uuid, sizeof(iEp->endpoint_uuid));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief From the set of contexts, it is returned the graph associated to that contexct matching
* with the passed contextId
*
* @param Set
* @param contextId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct graph_t* get_graph_by_contextId(struct contextSet_t* Set, gchar* contextId) {
g_assert(Set);
g_assert(contextId);
// iterate over the set of context. Pick the one matching with contextId, and return the graph.
// If not found, return NULL
struct graph_t* g = NULL;
for (gint i = 0; i < Set->num_context_set; i++) {
struct context_t* context = &(Set->contextList[i]);
if (strcmp(context->contextId, contextId) == 0) {
g = &(context->g);
return g;
}
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Process the service constraint and maps them into the path constraints
* to be fulfilled
*
* @param path_constraints
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct path_constraints_t * get_path_constraints(struct service_t* s) {
g_assert(s);
struct path_constraints_t* path_constraints = g_malloc0(sizeof(struct path_constraints_t));
if (path_constraints == NULL) {
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
char* eptr;
for (gint i = 0; i < s->num_service_constraints; i++) {
struct constraint_t* constraint = &(s->constraints[i]);;
if (strncmp((const char*)constraint->constraint_type, "bandwidth", 9) == 0) {
path_constraints->bwConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->bw = TRUE;
//DEBUG_PC("Path Constraint Bw: %f", path_constraints->bwConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "cost", 4) == 0) {
path_constraints->costConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->cost = TRUE;
//DEBUG_PC("Path Constraint Cost: %f", path_constraints->costConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "latency", 7) == 0) {
path_constraints->latencyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->latency = TRUE;
//DEBUG_PC("Path Constraint Latency: %f", path_constraints->latencyConstraint);
}
if (strncmp((const char*)constraint->constraint_type, "energy", 6) == 0) {
path_constraints->energyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
path_constraints->energy = TRUE;
//DEBUG_PC("Path Constraint Energy: %f", path_constraints->energyConstraint);
}
}
return path_constraints;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Creates the predecessors to keep the computed path
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct pred_t * create_predecessors ()
{
struct pred_t *predecessors = g_malloc0 (sizeof (struct pred_t));
if (predecessors == NULL)
{
DEBUG_PC ("memory allocation failed\n");
exit (-1);
}
return predecessors;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief create edge
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* create_edge()
{
struct edges_t* e = g_malloc0(sizeof(struct edges_t));
if (e == NULL)
{
DEBUG_PC("Memory allocation failed\n");
exit(-1);
}
return e;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Prints the list of the predecessors for a given computed Shortest Path
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_predecessors (struct pred_t *p)
{
g_assert (p);
DEBUG_PC ("Number of Predecessors: %d", p->numPredComp);
for (gint i = 0; i < p->numPredComp; i++) {
struct pred_comp_t *pComp = &(p->predComp[i]);
DEBUG_PC ("deviceId: %s", pComp->v.nodeId);
struct edges_t *e = &(pComp->e);
DEBUG_PC("Edge[#%d] (linkId): %s", i, e->linkId);
DEBUG_PC ("\t %s[%s] ===>", e->aNodeId.nodeId, e->aEndPointId);
DEBUG_PC("\t %s[%s]", e->zNodeId.nodeId, e->zEndPointId);
DEBUG_PC("\t aTopologyId: %s", e->aTopologyId);
DEBUG_PC("\t zTopologyId: %s", e->zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Builds the list of predecessors for the request destination using the computed Shortest Path
* being stored in map
*
* @param p
* @param s
* @param map
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_predecessors (struct pred_t *p, struct service_t *s, struct map_nodes_t *map)
{
g_assert (p);
g_assert (s);
g_assert (map);
struct nodes_t *v = create_node();
duplicate_string(v->nodeId, s->service_endpoints_id[1].device_uuid);
struct edges_t *e = create_edge ();
get_edge_from_map_by_node (e, v, map);
// Get u (being source of edge e)
struct nodes_t u;
duplicate_node_id (&e->aNodeId, &u);
// Add to the predecessors list
struct pred_comp_t *pred = &(p->predComp[p->numPredComp]);
duplicate_node_id (&u, &pred->v);
struct edges_t *e1 = &(pred->e);
duplicate_edge (e1, e);
p->numPredComp++;
// Back-trace edges till reaching the srcPEId
struct nodes_t* srcNode = create_node();
duplicate_string(srcNode->nodeId, s->service_endpoints_id[0].device_uuid);
while (compare_node_id (&u, srcNode) != 0) {
duplicate_node_id (&u, v);
get_edge_from_map_by_node (e, v, map);
// Get the u (being source of edge e)
duplicate_node_id (&e->aNodeId, &u);
// Get the new predecessor
struct pred_comp_t *pred = &p->predComp[p->numPredComp];
// Add to the predecessors list
duplicate_node_id (&u, &pred->v);
struct edges_t *e1 = &(pred->e);
duplicate_edge (e1, e);
p->numPredComp++;
}
print_predecessors (p);
g_free (e);
g_free(v);
g_free(srcNode);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief It creates a struct nodes_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct nodes_t * create_node ()
{
struct nodes_t *n = g_malloc0 (sizeof (struct nodes_t));
if (n == NULL) {
DEBUG_PC ("memory allocation problem");
exit (-1);
}
return n;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief It creates a routeElement_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct routeElement_t * create_routeElement ()
{
struct routeElement_t *rE = g_malloc0 (sizeof (struct routeElement_t));
if (rE == NULL)
{
DEBUG_PC ("memory allocation problem");
exit (-1);
}
return rE;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief copy node ids
*
* @param src
* @param dst
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_node_id (struct nodes_t *src, struct nodes_t *dst)
{
g_assert (src);
g_assert (dst);
//DEBUG_PC ("Duplicate nodeId for %s", src->nodeId);
strcpy (dst->nodeId, src->nodeId);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief compares a pair of node Ids
*
* @param a
* @param b
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint compare_node_id (struct nodes_t *a, struct nodes_t *b)
{
g_assert (a);
g_assert (b);
return (memcmp (&a->nodeId, b->nodeId, strlen (b->nodeId)));
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief duplicate two routeElement_t
*
* @param src
* @param dst
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_routeElement (struct routeElement_t *src, struct routeElement_t *dst)
{
g_assert (src);
g_assert (dst);
duplicate_node_id (&(src->aNodeId), &(dst->aNodeId));
duplicate_node_id (&(src->zNodeId), &(dst->zNodeId));
duplicate_string(dst->aEndPointId, src->aEndPointId);
duplicate_string(dst->zEndPointId, src->zEndPointId);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief duplicate two edges
*
* @param e1 (destination)
* @param e2 (source)
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_edge (struct edges_t *e1, struct edges_t *e2) {
g_assert (e1);
g_assert (e2);
duplicate_node_id (&e2->aNodeId, &e1->aNodeId);
duplicate_node_id (&e2->zNodeId, &e1->zNodeId);
//DEBUG_PC ("e->aNodeId: %s ---> e->zNodeId: %s", e1->aNodeId.nodeId, e1->zNodeId.nodeId);
duplicate_string(e1->aEndPointId, e2->aEndPointId);
duplicate_string(e1->zEndPointId, e2->zEndPointId);
duplicate_string(e1->linkId, e2->linkId);
duplicate_string(e1->interDomain_localId, e2->interDomain_localId);
duplicate_string(e1->interDomain_remoteId, e2->interDomain_remoteId);
duplicate_string(e1->aTopologyId, e2->aTopologyId);
duplicate_string(e1->zTopologyId, e2->zTopologyId);
e1->unit = e2->unit;
memcpy(&e1->totalCap, &e2->totalCap, sizeof(gdouble));
memcpy(&e1->availCap, &e2->availCap, sizeof(gdouble));
memcpy (&e1->cost, &e2->cost, sizeof (gdouble));
memcpy (&e1->delay, &e2->delay, sizeof (gdouble));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate path
*
* @param a - original
* @param b - copy
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path (struct compRouteOutputItem_t *a, struct compRouteOutputItem_t *b) {
g_assert (a);
g_assert (b);
memcpy (&b->availCap, &a->availCap, sizeof (gdouble));
b->numRouteElements = a->numRouteElements;
memcpy(&b->cost, &a->cost, sizeof(gdouble));
memcpy (&b->delay, &a->delay, sizeof (gdouble));
for (gint k = 0; k < a->numRouteElements; k++) {
//DEBUG_PC ("aNodeId: %s // zNodeId: %s", a->routeElement[k].aNodeId.nodeId, a->routeElement[k].zNodeId.nodeId);
// aNodeId duplication
struct nodes_t *n1 = &(a->routeElement[k].aNodeId);
struct nodes_t *n2 = &(b->routeElement[k].aNodeId);
duplicate_node_id (n1, n2);
//zNodeId duplication
n1 = &(a->routeElement[k].zNodeId);
n2 = &(b->routeElement[k].zNodeId);
duplicate_node_id (n1, n2);
duplicate_string(b->routeElement[k].aEndPointId, a->routeElement[k].aEndPointId);
duplicate_string(b->routeElement[k].zEndPointId, a->routeElement[k].zEndPointId);
duplicate_string(b->routeElement[k].linkId, a->routeElement[k].linkId);
duplicate_string(b->routeElement[k].aTopologyId, a->routeElement[k].aTopologyId);
duplicate_string(b->routeElement[k].zTopologyId, a->routeElement[k].zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Duplicate path from compRouteOutputItem_t to path_t
*
* @param a - original
* @param b - copy
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path_t(struct compRouteOutputItem_t* a, struct path_t* b)
{
g_assert(a);
g_assert(b);
memcpy(&b->path_capacity.value, &a->availCap, sizeof(gdouble));
memcpy(&b->path_cost.cost_value, &a->cost, sizeof(gdouble));
memcpy(&b->path_latency.fixed_latency, &a->delay, sizeof(gdouble));
b->numPathLinks = a->numRouteElements;
for (gint k = 0; k < a->numRouteElements; k++) {
struct routeElement_t* rE = &(a->routeElement[k]);
struct pathLink_t* pL = &(b->pathLinks[k]);
// copy the aDeviceId and aEndpointId, zDeviceId and zEndPointId
duplicate_string(pL->aDeviceId, rE->aNodeId.nodeId);
duplicate_string(pL->zDeviceId, rE->zNodeId.nodeId);
duplicate_string(pL->aEndPointId, rE->aEndPointId);
duplicate_string(pL->zEndPointId, rE->zEndPointId);
duplicate_string(pL->topologyId.topology_uuid, rE->aTopologyId);
duplicate_string(pL->topologyId.contextId, rE->contextId);
//copy the linkId
duplicate_string(pL->linkId, rE->linkId);
pL->numLinkTopologies++;
duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->aTopologyId);
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
pL->numLinkTopologies++;
duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->zTopologyId);
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Return the index into mapN related nodeId
*
* @param nodeId
* @para mapN
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint get_map_index_by_nodeId (gchar *nodeId, struct map_nodes_t * mapN)
{
gint index = -1;
gint i = 0;
for (i = 0; i < mapN->numMapNodes; i++)
{
//DEBUG_PC ("i: %d; current: %s // targeted: %s", i, mapN->map[i].verticeId.nodeId, nodeId);
if (memcmp (mapN->map[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0)
{
index = i;
//DEBUG_PC ("Index: %d", index);
return index;
}
}
//DEBUG_PC ("Index: %d", index);
return index;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Get the edge e enabling reaching the computed v in mapNodes
*
* @param e
* @param v
* @param mapN
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_map_by_node (struct edges_t *e, struct nodes_t* v, struct map_nodes_t *mapN) {
//DEBUG_PC ("Get the Edge into map from node v: %s", v.nodeId);
// Get the edge reaching the node v from mapNodes
gint map_vIndex = get_map_index_by_nodeId (v->nodeId, mapN);
//DEBUG_PC ("aNodeId: %s --> zNodeId: %s", mapN->map[map_vIndex].predecessor.aNodeId.nodeId, mapN->map[map_vIndex].predecessor.zNodeId.nodeId);
struct edges_t *te = &(mapN->map[map_vIndex].predecessor);
duplicate_edge (e, te);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Get the edge from the predecessors array for a given node n
*
* @param e
* @param n
* @param predecessors
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_predecessors (struct edges_t *e, struct nodes_t* n, struct pred_t *predecessors) {
g_assert(predecessors);
DEBUG_PC ("Get edge outgoing node %s from predecessors list", n->nodeId);
//print_predecessors (predecessors);
for (gint i = 0; i < predecessors->numPredComp; i++) {
struct pred_comp_t *pred = &(predecessors->predComp[i]);
if (compare_node_id (n, &pred->v) == 0) {
// Add to the predecessors list
struct edges_t *te = &(pred->e);
DEBUG_PC("add e (linkId): %s", te->linkId);
duplicate_edge (e, te);
return;
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Construct the path using the predecessors list
*
* @param path
* @param predecessors
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_path (struct compRouteOutputItem_t *p, struct pred_t *predecessors, struct service_t *s) {
//DEBUG_PC ("\n");
// Get the source device Id of the network connectivity service
struct nodes_t *v = create_node();
duplicate_string(v->nodeId, s->service_endpoints_id[0].device_uuid);
struct edges_t* e = create_edge();
// Get the edge for v in predecessors
get_edge_from_predecessors (e, v, predecessors);
// Get the target for e
struct nodes_t u;
duplicate_node_id (&e->zNodeId, &u);
//DEBUG_PC ("u: %s", u.nodeId);
struct path_constraints_t* pathCons = get_path_constraints(s);
// Add route element to the path being constructed
gint k = 0;
duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
duplicate_string(p->routeElement[k].linkId, e->linkId);
duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);
p->numRouteElements++;
// Get the destination device Id of the network connectivity service
struct nodes_t* dst = create_node();
duplicate_string(dst->nodeId, s->service_endpoints_id[1].device_uuid);
while (compare_node_id (&u, dst) != 0)
{
k++;
p->numRouteElements++;
// v = u
duplicate_node_id (&u, v);
get_edge_from_predecessors (e, v, predecessors);
// Get the target u
duplicate_node_id (&e->zNodeId, &u);
// Add route element to the path being constructed
duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
duplicate_string(p->routeElement[k].linkId, e->linkId);
duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);
// copy the contextId
//duplicate_string(p->routeElement[k].contextId, s->service_endpoints_id[0].topology_id.contextId);
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
}
g_free(e); g_free(v); g_free(pathCons);
//DEBUG_PC ("Path is constructed");
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Print the graph for DEBUG_PCging purposes
*
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_graph (struct graph_t *g)
{
DEBUG_PC ("================================================================");
DEBUG_PC ("=========================== GRAPH ==========================");
DEBUG_PC ("================================================================");
DEBUG_PC("Graph Num Vertices: %d", g->numVertices);
gint i = 0, j = 0, k = 0;
for (i = 0; i < g->numVertices; i++)
{
DEBUG_PC ("Head Vertice [%s]", g->vertices[i].verticeId.nodeId);
for (j = 0; j < g->vertices[i].numTargetedVertices; j++)
{
DEBUG_PC (" Tail Vertice: %s", g->vertices[i].targetedVertices[j].tVertice.nodeId);
for (k = 0; k < g->vertices[i].targetedVertices[j].numEdges; k++)
{
struct edges_t *e = &(g->vertices[i].targetedVertices[j].edges[k]);
DEBUG_PC ("%s(%s) --> %s(%s) [C: %f, Bw: %f b/s, Delay: %f ms]", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId,
e->zEndPointId, e->cost, e->availCap, e->delay);
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look for a given edge into the graph
*
* @param verticeIndex
* @param targetedVerticeIndex
* @param e
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_edge_lookup (gint verticeIndex, gint targetedVerticeIndex, struct edges_t *e, struct graph_t *g) {
gint indexEdge = -1;
for (gint j = 0; j < g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].numEdges; j++) {
struct edges_t *e2 = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].edges[j]);
if ((compare_node_id (&e->aNodeId, &e2->aNodeId) == 0) &&
(compare_node_id (&e->zNodeId, &e2->zNodeId) == 0) &&
(strcmp (e->aEndPointId, e2->aEndPointId) == 0) &&
(strcmp (e->zEndPointId, e2->zEndPointId) == 0) &&
(strcmp(e->linkId, e2->linkId) == 0)) {
DEBUG_PC ("%s (%s) --> %s (%s) [linkId: %s] FOUND in the Graph at index: %d", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId,
e->zEndPointId, e->linkId, j);
indexEdge = j;
return indexEdge;
}
}
return indexEdge;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look for a given vertice within the graph using the nodeId
*
* @param nodeId
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_vertice_lookup (gchar *nodeId, struct graph_t *g)
{
gint index = -1;
//DEBUG_PC("Searching Node: %s", nodeId);
for (gint i = 0; i < g->numVertices; i++) {
//DEBUG_PC("Checked Graph Node: %s", g->vertices[i].verticeId.nodeId);
if (memcmp (g->vertices[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0)
{
index = i;
//DEBUG_PC ("%s is found in the graph vertice [%d]", nodeId, index);
break;
}
}
return (index);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice
*
* @param nodeId
* @param vIndex
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_lookup (gint vIndex, gchar *nodeId, struct graph_t *g)
{
gint addedTargetedVerticeIndex = -1;
gint i = 0;
if (g->vertices[vIndex].numTargetedVertices == 0)
{
return (addedTargetedVerticeIndex);
}
for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
{
if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
{
DEBUG_PC ("Targeted %s reachable from %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = i;
return (addedTargetedVerticeIndex);
}
}
// not found ...
return (addedTargetedVerticeIndex);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice, if not to be added
*
* @param nodeId
* @param vIndex
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_add (gint vIndex, gchar *nodeId, struct graph_t *g)
{
gint addedTargetedVerticeIndex = -1;
gint i = 0;
if (g->vertices[vIndex].numTargetedVertices == 0)
{
//DEBUG_PC ("targeted vertice %s being reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = 0;
return (addedTargetedVerticeIndex);
}
for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
{
if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
{
//DEBUG_PC ("Targeted vertice %s is already considered in the reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
addedTargetedVerticeIndex = -1;
return (addedTargetedVerticeIndex);
}
}
// It is not found, next to be added at i position
addedTargetedVerticeIndex = i;
return (addedTargetedVerticeIndex);
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove edge from the graph
*
* @param g
* @param e
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
void remove_edge_from_graph (struct graph_t *g, struct edges_t *e)
{
// Find the ingress vertice into the graph
DEBUG_PC ("Removing from Graph %s[%s]) ---> %s[%s] (linkId: %s)", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, e->aEndPointId, e->linkId);
gint verticeIndex = -1;
verticeIndex = graph_vertice_lookup (e->aNodeId.nodeId, g);
if (verticeIndex == -1) {
DEBUG_PC ("Edge w/ %s is NOT in the Graph!!", e->aNodeId.nodeId);
return;
}
// Find the targeted vertice from vertice Id
gint targetedVerticeIndex = -1;
targetedVerticeIndex = graph_targeted_vertice_lookup (verticeIndex, e->zNodeId.nodeId, g);
if (targetedVerticeIndex == -1) {
DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
return;
}
//DEBUG_PC ("%s --> %s found in the Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);
// Get the edge position
gint edgeIndex = -1;
edgeIndex = graph_edge_lookup (verticeIndex, targetedVerticeIndex, e, g);
if (edgeIndex == -1) {
DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
return;
}
//DEBUG_PC ("%s --> %s FOUND in Graph w/ edgeIndex: %d", e->aNodeId.nodeId, e->zNodeId.nodeId, edgeIndex);
// Remove the edge
//DEBUG_PC ("Start Removing %s --> %s from Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);
struct targetNodes_t *v = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex]);
for (gint j = edgeIndex; j < v->numEdges; j++) {
struct edges_t *e1 = &(v->edges[j]);
struct edges_t *e2 = &(v->edges[j+1]);
duplicate_edge (e1, e2);
}
v->numEdges --;
DEBUG_PC ("Number of Edges between %s and %s is %d", e->aNodeId.nodeId, e->zNodeId.nodeId, v->numEdges);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief create the pointer for keeping a set of the paths (struct compRouteOutput_t)
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct path_set_t * create_path_set ()
{
struct path_set_t * p = g_malloc0 (sizeof (struct path_set_t));
if (p == NULL)
{
DEBUG_PC ("Memory allocation problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove the path set
*
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2021
*/
/////////////////////////////////////////////////////////////////////////////////////////
void remove_path_set(struct path_set_t* p)
{
g_assert(p);
g_free(p);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Create map of nodes to handle the path computation
*
* @param mapN
* @param g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_map_node (struct map_nodes_t *mapN, struct graph_t *g)
{
//DEBUG_PC ("Construction of the Map of Nodes");
for (gint i = 0; i < g->numVertices; i++)
{
duplicate_node_id (&g->vertices[i].verticeId, &mapN->map[i].verticeId);
mapN->map[i].distance = INFINITY_COST;
mapN->map[i].avaiBandwidth = 0.0;
mapN->map[i].latency = INFINITY_COST;
mapN->numMapNodes++;
}
//DEBUG_PC ("mapNodes formed by %d Nodes", mapN->numMapNodes);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for path of struct compRouteOutputList_t *
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputList_t * create_route_list ()
{
struct compRouteOutputList_t *p = g_malloc0 (sizeof (struct compRouteOutputList_t));
if (p == NULL)
{
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for path of struct compRouteOutputItem_t *
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputItem_t *create_path_item ()
{
struct compRouteOutputItem_t *p = g_malloc0 (sizeof (struct compRouteOutputItem_t));
if (p == NULL) {
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return p;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sort the set of paths according to the metric (1st criteria) and latency (2nd criteria)
*
* @params setP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void sort_path_set(struct path_set_t* setP) {
g_assert(setP);
// Sort the paths contained in setP by shotest metric and latency
float epsilon = 0.0000001;
for (gint i = 0; i < setP->numPaths; i++) {
for (gint j = 0; j < (setP->numPaths - i - 1); j++) {
struct compRouteOutputItem_t* path1 = &setP->paths[j];
struct compRouteOutputItem_t* path2 = &setP->paths[j + 1];
struct compRouteOutputItem_t* pathTmp = create_path_item();
// 1st Criteria (avail Bw)
if ((path2->availCap - path1->availCap > 0.0) && (fabs(path1->availCap - path2->availCap) > epsilon)) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else if ((path1->availCap - path2->availCap > 0.0) && (fabs(path1->availCap - path2->availCap) > epsilon)) {
g_free(pathTmp);
continue;
}
// likely the same available bw between path1 and path2
else if (fabs(path1->availCap - path2->availCap) < epsilon) {
// 2nd criteria: sort path cost
if (path1->cost > path2->cost) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
else if (path1->cost < path2->cost) {
g_free(pathTmp);
continue;
}
// 3rd criteria: same path cost, prioritize the one with lowest e2e latency
else if (path1->cost == path2->cost) {
if ((path2->delay - path1->delay > 0.0) && (fabs(path1->delay - path2->delay) > epsilon)) {
g_free(pathTmp);
continue;
}
else if ((path1->delay - path2->delay > 0.0) && (fabs(path1->delay - path2->delay) > epsilon)) {
duplicate_path(path1, pathTmp);
duplicate_path(path2, path1);
duplicate_path(pathTmp, path2);
g_free(pathTmp);
continue;
}
// Same bw, same cost and same latency, path1 and path2 are practically the same
else if (fabs(path1->delay - path2->delay) < epsilon) {
g_free(pathTmp);
continue;
}
}
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Remove first element from the path sets
*
* @params setP
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void pop_front_path_set (struct path_set_t *setP) {
for (gint j = 0; j < setP->numPaths - 1; j++) {
struct compRouteOutputItem_t *path1 = &setP->paths[j];
struct compRouteOutputItem_t *path2 = &setP->paths[j+1];
duplicate_path (path2, path1);
}
setP->numPaths--;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add routeElement to the back of the path
*
* @param rE
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void add_routeElement_path_back (struct routeElement_t *rE, struct compRouteOutputItem_t *p)
{
//DEBUG_PC ("p->numRouteElements: %d", p->numRouteElements);
p->numRouteElements++;
gint index = p->numRouteElements - 1;
struct nodes_t *pn = &(p->routeElement[index].aNodeId);
struct nodes_t *rEn = &(rE->aNodeId);
// duplicate aNodeId
duplicate_node_id (rEn, pn);
pn = &(p->routeElement[index].zNodeId);
rEn = &(rE->zNodeId);
duplicate_node_id (rEn, pn);
duplicate_string(p->routeElement[index].aEndPointId, rE->aEndPointId);
duplicate_string(p->routeElement[index].zEndPointId, rE->zEndPointId);
duplicate_string(p->routeElement[index].linkId, rE->linkId);
duplicate_string(p->routeElement[index].aTopologyId, rE->aTopologyId);
duplicate_string(p->routeElement[index].zTopologyId, rE->zTopologyId);
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief This function compares ap and rootPath. If all the links are equal between both ap and rootPath till the sN, then the link from sN to next node
* ap is returned
*
* @params ap
* @params p
* @params sN
* @params e
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gboolean matching_path_rootPath (struct compRouteOutputItem_t *ap, struct compRouteOutputItem_t *rootPath, struct nodes_t *sN, struct edges_t *e) {
gint j = 0;
gboolean ret = FALSE;
while ((j < ap->numRouteElements) && (j < rootPath->numRouteElements)) {
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) &&
//(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0) &&
(memcmp (sN->nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0)) {
duplicate_node_id (&ap->routeElement[j].aNodeId, &e->aNodeId);
duplicate_node_id (&ap->routeElement[j].zNodeId, &e->zNodeId);
duplicate_string(e->aEndPointId, ap->routeElement[j].aEndPointId);
duplicate_string(e->zEndPointId, ap->routeElement[j].zEndPointId);
duplicate_string(e->linkId, ap->routeElement[j].linkId);
return TRUE;
}
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) &&
(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) == 0)) {
j++;
continue;
}
if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) != 0) ||
(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0)) {
//DEBUG_PC ("ap and rootPath not in the same path");
return ret;
}
}
return ret;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief This function is used to modify the graph to be used for running the subsequent SP computations acording to the YEN algorithm principles
*
* @params g
* @params A
* @params rootPath
* @params spurNode
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void modify_targeted_graph (struct graph_t *g, struct path_set_t *A, struct compRouteOutputItem_t * rootPath, struct nodes_t * spurNode) {
//DEBUG_PC ("Modify the Targeted graph according to the Yen algorithm principles");
for (gint j = 0; j < A->numPaths; j++)
{
struct compRouteOutputItem_t *ap = &A->paths[j];
struct edges_t *e = create_edge ();
gboolean ret = FALSE;
ret = matching_path_rootPath (ap, rootPath, spurNode, e);
if (ret == TRUE) {
//DEBUG_PC ("Removal %s [%u]--> %s [%u] from the graph", e->aNodeId.nodeId, e->aLinkId, e->zNodeId.nodeId, e->zLinkId);
remove_edge_from_graph (g, e);
//DEBUG_PC ("Print Resulting Graph");
//print_graph (g);
g_free (e);
}
if (ret == FALSE)
{
g_free (e);
continue;
}
}
return;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Supporting fucntion to Check if a nodeId is already in the items of a given GList
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint find_nodeId (gconstpointer data, gconstpointer userdata)
{
/** check values */
g_assert(data != NULL);
g_assert(userdata != NULL);
struct nodeItem_t *SNodeId = (struct nodeItem_t *)data;
guchar * nodeId = (guchar *)userdata;
//DEBUG_PC ("SNodeId (%s) nodeId (%s)", SNodeId->node.nodeId, nodeId);
if (!memcmp(SNodeId->node.nodeId, nodeId, strlen (SNodeId->node.nodeId)))
{
return (0);
}
return -1;
}
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Explores the link between u and v
*
* @param u
* @param v
* @param g
* @param s
* @param S
* @param Q
* @param mapNodes
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint check_link (struct nodeItem_t *u, gint indexGraphU, gint indexGraphV, struct graph_t *g,
struct service_t *s, GList **S, GList **Q, struct map_nodes_t *mapNodes) {
g_assert(g);
g_assert(s);
g_assert(mapNodes);
struct targetNodes_t *v = &(g->vertices[indexGraphU].targetedVertices[indexGraphV]);
DEBUG_PC("Explored link (u ===> v):");
DEBUG_PC("u: %s ====>", u->node.nodeId);
DEBUG_PC("====> v: %s", v->tVertice.nodeId);
// v already explored in S? then, discard it
GList *found = g_list_find_custom (*S, v->tVertice.nodeId, find_nodeId);
if (found != NULL) {
DEBUG_PC ("v (%s) in S, discard to explore it!", v->tVertice.nodeId);
return 0;
}
// Get the set of constraints imposed by the service
struct path_constraints_t* path_constraints = get_path_constraints(s);
gdouble distance_through_u = INFINITY_COST;
gdouble latency_through_u = INFINITY_COST;
gint i = 0;
// Check bandwidth requirement is fulfillied on edge u --> v
gint foundAvailBw = 0;
gdouble edgeAvailBw = 0.0;
for (i = 0; i < v->numEdges; i++) {
struct edges_t *e = &(v->edges[i]);
memcpy (&edgeAvailBw, &(e->availCap), sizeof (gdouble));
DEBUG_PC("edge:u ===> v");
DEBUG_PC ("%s[%s] ===>", u->node.nodeId, e->aEndPointId);
DEBUG_PC("====> %s[%s]", v->tVertice.nodeId, e->zEndPointId);
DEBUG_PC("edge available bw: %f", edgeAvailBw);
// if network service constraint specifies "bandwidth" needs (assuming coherent units)
if (path_constraints->bw == TRUE) {
if (edgeAvailBw < path_constraints->bwConstraint) {
continue;
}
else {
foundAvailBw = 1;
break;
}
}
}
// if bw path constraint is specified but not sastified ... discard the edge
if ((path_constraints->bw == TRUE) && (foundAvailBw == 0))
{
DEBUG_PC ("AvailBw: %f < path_constraint: %f -- Discard Edge", edgeAvailBw, path_constraints->bwConstraint);
g_free(path_constraints);
return 0;
}
gint indexEdge = i; // get the index for the explored edge
// Update distance, latency and availBw through u to reach v
gint map_uIndex = get_map_index_by_nodeId (u->node.nodeId, mapNodes);
struct map_t *u_map = &mapNodes->map[map_uIndex];
distance_through_u = u_map->distance + v->edges[indexEdge].cost;
latency_through_u = u_map->latency + v->edges[indexEdge].delay;
gdouble availBw_through_u = 0.0;
// ingress endpoint (u) is the src of the request
if (strcmp (u->node.nodeId, s->service_endpoints_id[0].device_uuid) == 0) {
//DEBUG_PC ("AvailBw %f on %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);
memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));
}
else {
// Get the minimum available bandwidth between the src-->u and the new added edge u-->v
//DEBUG_PC ("Current AvailBw: %f from src to %s", u_map->avaiBandwidth, u->node.nodeId);
//DEBUG_PC ("AvailBw: %f %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);
if (u_map->avaiBandwidth <= edgeAvailBw) {
memcpy (&availBw_through_u, &u_map->avaiBandwidth, sizeof (gdouble));
}
else {
memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));
}
}
// Relax the link according to the pathCost and latency
gint map_vIndex = get_map_index_by_nodeId (v->tVertice.nodeId, mapNodes);
struct map_t *v_map = &mapNodes->map[map_vIndex];
// If cost dist (u, v) > dist (src, v) relax the link
if (distance_through_u > v_map->distance) {
//DEBUG_PC ("dist(src, u) + dist(u, v): %f > dist (src, v): %f --> Discard Link", distance_through_u, v_map->distance);
return 0;
}
// If dist (src, u) + dist (u, v) = current dist(src, v), then use the latency as discarding criteria
if ((distance_through_u == v_map->distance) && (latency_through_u > v_map->latency)) {
//DEBUG_PC ("dist(src, u) + dist(u,v) = current dist(src, v), but latency (src,u) + latency (u, v) > current latency (src, v)");
return 0;
}
// If dist (src, u) + dist (u,v) == current dist(src, v) AND latency (src, u) + latency (u, v) == current latency (src, v), the available bandwidth is the criteria
if ((distance_through_u == v_map->distance) && (latency_through_u == v_map->latency) && (availBw_through_u < v_map->avaiBandwidth)) {
return 0;
}
DEBUG_PC ("%s --> %s Relaxed", u->node.nodeId, v->tVertice.nodeId);
DEBUG_PC ("\t AvailBw: %f Mb/s, Cost: %f, Latency: %f ms", availBw_through_u, distance_through_u, latency_through_u);
// Update Q list --
struct nodeItem_t *nodeItem = g_malloc0 (sizeof (struct nodeItem_t));
if (nodeItem == NULL) {
DEBUG_PC ("memory allocation failed\n");
exit (-1);
}
nodeItem->distance = distance_through_u;
memcpy(&nodeItem->distance, &distance_through_u, sizeof(gdouble));
memcpy(&nodeItem->latency, &latency_through_u, sizeof(gdouble));
duplicate_node_id (&v->tVertice, &nodeItem->node);
// add node to the Q list
*Q = g_list_insert_sorted (*Q, nodeItem, sort_by_distance);
//DEBUG_PC ("%s ADDED to Q (length: %d)", nodeItem->node.nodeId, g_list_length(*Q));
// Update the mapNodes for the specific reached tv
v_map->distance = distance_through_u;
memcpy(&v_map->distance, &distance_through_u, sizeof(gdouble));
memcpy (&v_map->avaiBandwidth, &availBw_through_u, sizeof (gdouble));
memcpy (&v_map->latency, &latency_through_u, sizeof (gdouble));
// Duplicate the predecessor edge into the mapNodes
struct edges_t *e1 = &(v_map->predecessor);
struct edges_t *e2 = &(v->edges[indexEdge]);
duplicate_edge (e1, e2);
DEBUG_PC ("u->v Edge: %s(%s) --> %s(%s)", e2->aNodeId.nodeId, e2->aEndPointId, e2->zNodeId.nodeId, e2->zEndPointId);
DEBUG_PC("v-pred aTopology: %s", e2->aTopologyId);
DEBUG_PC("v-pred zTopology: %s", e2->zTopologyId);
// Check whether v is dstPEId
//DEBUG_PC ("Targeted dstPEId: %s", req->dstPEId.nodeId);
//DEBUG_PC ("nodeId added to the map: %s", v_map->verticeId.nodeId);
//DEBUG_PC ("Q Length: %d", g_list_length(*Q));
g_free(path_constraints);
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check the feasability of a path wrt the constraints imposed by the request in terms of latency
*
* @param s
* @param p
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gboolean check_computed_path_feasability (struct service_t *s, struct compRouteOutputItem_t* p) {
float epsilon = 0.0000001;
struct path_constraints_t* pathCons = get_path_constraints(s);
gboolean ret = TRUE;
if (pathCons->latency == TRUE) {
if ((pathCons->latencyConstraint - p->delay > 0.0) || (fabs(pathCons->latencyConstraint - p->delay) < epsilon)) {
DEBUG_PC("Computed Path (latency: %f) is feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
}
else {
DEBUG_PC("Computed Path (latency: %f) is NOT feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
g_free(pathCons);
return FALSE;
}
}
// Other constraints...
g_free(pathCons);
return ret;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Sorting the GList Q items by distance
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint sort_by_distance (gconstpointer a, gconstpointer b)
{
//DEBUG_PC ("sort by distance a and b");
g_assert(a != NULL);
g_assert(b != NULL);
//DEBUG_PC ("sort by distance a and b");
struct nodeItem_t *node1 = (struct nodeItem_t *)a;
struct nodeItem_t *node2 = (struct nodeItem_t *)b;
g_assert (node1);
g_assert (node2);
//DEBUG_PC ("a->distance %u; b->distance %u", node1->distance, node2->distance);
//DEBUG_PC("a->latency: %f; b->latency: %f", node1->latency, node2->latency);
//1st criteria, sorting by lowest distance
if (node1->distance > node2->distance)
return 1;
else if (node1->distance < node2->distance)
return 0;
if (node1->distance == node2->distance)
{
if (node1->latency > node2->latency)
return 1;
else if (node1->latency <= node2->latency)
return 0;
}
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for graph
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct graph_t * create_graph () {
struct graph_t * g = g_malloc0 (sizeof (struct graph_t));
if (g == NULL)
{
DEBUG_PC ("Memory Allocation Problem");
exit (-1);
}
return g;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for mapNodes
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct map_nodes_t * create_map_node () {
struct map_nodes_t * mN = g_malloc0 (sizeof (struct map_nodes_t));
if (mN == NULL)
{
DEBUG_PC ("Memory allocation failed");
exit (-1);
}
return mN;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Look up for the service in the servieList bound to a serviceUUID
*
* @params serviceUUID
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct service_t* get_service_for_computed_path(gchar* serviceUUID) {
for (gint i = 0; i < serviceList->numServiceList; i++) {
struct service_t* s = &(serviceList->services[i]);
if (strcmp(s->serviceId.service_uuid, serviceUUID) == 0)
return s;
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for struct deviceList_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct deviceList_t* create_device_list()
{
struct deviceList_t* dList = g_malloc0(sizeof(struct deviceList_t));
if (dList == NULL)
{
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
return dList;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for struct linkList_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct linkList_t* create_link_list() {
struct linkList_t* lList = g_malloc0(sizeof(struct linkList_t));
if (lList == NULL)
{
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
lList->numLinks = 0;
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
return lList;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for struct serviceList_t
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct serviceList_t* create_service_list() {
struct serviceList_t* sList = g_malloc0(sizeof(struct serviceList_t));
if (sList == NULL)
{
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
return sList;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the service type
*
* @param type
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_service_type(guint type) {
switch (type) {
case SERVICE_TYPE_UNKNOWN:
DEBUG_PC("Service Type UNKNOWN");
break;
case SERVICE_TYPE_L3NM:
DEBUG_PC("Service Type L3NM");
break;
case SERVICE_TYPE_L2NM:
DEBUG_PC("Service Type L2NM");
break;
case SERVICE_TYPE_TAPI:
DEBUG_PC("Service Type L2NM");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the port direction
*
* @param direction
*
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_link_port_direction(guint direction)
{
switch (direction) {
case LINK_PORT_DIRECTION_BIDIRECTIONAL:
//DEBUG_PC("Bidirectional Port Direction");
break;
case LINK_PORT_DIRECTION_INPUT:
//DEBUG_PC("Input Port Direction");
break;
case LINK_PORT_DIRECTION_OUTPUT:
//DEBUG_PC("Output Port Direction");
break;
case LINK_PORT_DIRECTION_UNKNOWN:
//DEBUG_PC("Unknown Port Direction");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the port termination direction
*
* @param direction
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_termination_direction(guint direction)
{
switch (direction) {
case TERMINATION_DIRECTION_BIDIRECTIONAL:
//DEBUG_PC("Bidirectional Termination Direction");
break;
case TERMINATION_DIRECTION_SINK:
//DEBUG_PC("Input Termination Direction");
break;
case TERMINATION_DIRECTION_SOURCE:
//DEBUG_PC("Output Termination Direction");
break;
case TERMINATION_DIRECTION_UNKNOWN:
//DEBUG_PC("Unknown Termination Direction");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the termination state
*
* @param state
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_termination_state(guint state)
{
switch (state) {
case TERMINATION_STATE_CAN_NEVER_TERMINATE:
//DEBUG_PC("Can never Terminate");
break;
case TERMINATION_STATE_NOT_TERMINATED:
DEBUG_PC("Not terminated");
break;
case TERMINATION_STATE_TERMINATED_SERVER_TO_CLIENT_FLOW:
DEBUG_PC("Terminated server to client flow");
break;
case TERMINATION_STATE_TERMINATED_CLIENT_TO_SERVER_FLOW:
DEBUG_PC("Terminated client to server flow");
break;
case TERMINATION_STATE_TERMINATED_BIDIRECTIONAL:
//DEBUG_PC("Terminated bidirectional");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the capacity unit
*
* @param unit
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_capacity_unit(guint unit) {
switch (unit) {
case CAPACITY_UNIT_TB:
DEBUG_PC("Unit in TB");
break;
case CAPACITY_UNIT_TBPS:
DEBUG_PC("Unit in TB/s");
break;
case CAPACITY_UNIT_GB:
DEBUG_PC("Unit in GB");
break;
case CAPACITY_UNIT_GBPS:
DEBUG_PC("Unit in GB/s");
break;
case CAPACITY_UNIT_MB:
DEBUG_PC("Unit in MB");
break;
case CAPACITY_UNIT_MBPS:
//DEBUG_PC("Unit in MB/s");
break;
case CAPACITY_UNIT_KB:
DEBUG_PC("Unit in KB");
break;
case CAPACITY_UNIT_KBPS:
DEBUG_PC("Unit in KB/s");
break;
case CAPACITY_UNIT_GHZ:
DEBUG_PC("Unit in GHz");
break;
case CAPACITY_UNIT_MHZ:
DEBUG_PC("Unit in MHz");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Friendly function to log the link forwarding direction
*
* @param linkFwDir
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_link_forwarding_direction(guint linkFwDir) {
switch (linkFwDir) {
case LINK_FORWARDING_DIRECTION_BIDIRECTIONAL:
DEBUG_PC("BIDIRECTIONAL LINK FORWARDING DIRECTION");
break;
case LINK_FORWARDING_DIRECTION_UNIDIRECTIONAL:
DEBUG_PC("UNIDIRECTIONAL LINK FORWARDING DIRECTION");
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
break;
case LINK_FORWARDING_DIRECTION_UNKNOWN:
DEBUG_PC("UNKNOWN LINK FORWARDING DIRECTION");
break;
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Allocate memory for the contextSet
*
* @param
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct contextSet_t* create_contextSet() {
struct contextSet_t* c = g_malloc0(sizeof(struct contextSet_t));
if (c == NULL) {
DEBUG_PC("Memory Allocation Failure");
exit(-1);
}
return c;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Search a specific contextUuid element into the contextSet
*
* @param contextUuid
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct context_t* find_contextId_in_set(gchar* contextUuid, struct contextSet_t* set) {
g_assert(set);
//DEBUG_PC("Checking if contextId: %s in in the ContextList??", contextUuid);
for (gint i = 0; i < set->num_context_set; i++) {
struct context_t* c = &(set->contextList[i]);
//DEBUG_PC("Context Item [%d] Id: %s", i, c->contextId);
if (strcmp(contextUuid, c->contextId) == 0) {
//DEBUG_PC("contextId: %s is FOUND in the ContextSet_List", contextUuid);
return c;
}
}
//DEBUG_PC("contextId: %s NOT FOUND in the ContextSet_List", contextUuid);
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add a specific context uuid into the context set
*
* @param contextUuid
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct context_t* add_contextId_in_set(gchar *contextUuid, struct contextSet_t *set) {
set->num_context_set++;
struct context_t* c = &(set->contextList[set->num_context_set - 1]);
duplicate_string(c->contextId, contextUuid);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Find a vertex in a specific graph
*
* @param contextUuid
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* find_vertex_in_graph_context(struct graph_t *g, gchar* deviceId) {
for (gint i = 0; i < g->numVertices; i++)
{
struct vertices_t* v = &(g->vertices[i]);
if (strcmp(v->verticeId.nodeId, deviceId) == 0) {
return v;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Adding a deviceId into a graph
*
* @param g
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* add_vertex_in_graph(struct graph_t* g, gchar* deviceId) {
g->numVertices++;
struct vertices_t* v = &(g->vertices[g->numVertices - 1]);
duplicate_string(v->verticeId.nodeId, deviceId);
return v;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Construct the graphs (vertices and edges) bound to every individual context
*
* @param cSet
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_deviceList(struct contextSet_t* cSet) {
// Check every device their endpoints
for (gint i = 0; i < deviceList->numDevices; i++) {
struct device_t* d = &(deviceList->devices[i]);
//DEBUG_PC("Exploring DeviceId: %s", d->deviceId);
// Check the associated endPoints
for (gint j = 0; j < d->numEndPoints; j++) {
struct endPoint_t* eP = &(d->endPoints[j]);
// Get endPointId (topology, context, device Id and endpoint uuid)
struct endPointId_t* ePid = &(eP->endPointId); //end point id
//DEBUG_PC(" EndPointId: %s || Type: %s", eP->endPointId.endpoint_uuid, d->deviceType);
//DEBUG_PC(" TopologyId: %s || ContextId: %s", eP->endPointId.topology_id.topology_uuid, eP->endPointId.topology_id.contextId);
// Add contextId in ContextSet and the deviceId (+endpoint) into the vertex set
struct context_t *c = find_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
if (c == NULL) {
//DEBUG_PC(" contextUuid: %s MUST BE ADDED to ContextSet", eP->endPointId.topology_id.contextId);
c = add_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
}
// Check if the deviceId and endPointUuid are already considered in the graph of the context c
struct vertices_t* v = find_vertex_in_graph_context(&c->g, d->deviceId);
if (v == NULL) {
//DEBUG_PC(" deviceId: %s MUST BE ADDED to the Context Graph", d->deviceId);
v = add_vertex_in_graph(&c->g, d->deviceId);
}
}
}
//print_contextSet(cSet);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Determine whether a deviceId is in the targetNode list of a specific vertex v
*
* @param v
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct targetNodes_t* find_targeted_vertex_in_graph_context(struct vertices_t* v, gchar *deviceId) {
for (gint k = 0; k < v->numTargetedVertices; k++) {
struct targetNodes_t* w = &(v->targetedVertices[k]);
if (strcmp(w->tVertice.nodeId, deviceId) == 0) {
return w;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Add a deviceId a targetNode of a specific vertex v
*
* @param v
* @param deviceId
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct targetNodes_t* add_targeted_vertex_in_graph_context(struct vertices_t* v, gchar* bDeviceId) {
v->numTargetedVertices++;
struct targetNodes_t* w = &(v->targetedVertices[v->numTargetedVertices - 1]);
duplicate_string(w->tVertice.nodeId, bDeviceId);
return w;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Returns the structure of a device endpoint bound to a specific deviceId and endPointId
*
* @param devId
* @param endPointUuid
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct endPoint_t* find_device_tied_endpoint(gchar* devId, gchar* endPointUuid) {
//DEBUG_PC("devId: %s ePId: %s", devId, endPointUuid);
for (gint i = 0; i < deviceList->numDevices; i++) {
struct device_t* d = &(deviceList->devices[i]);
if (strcmp(d->deviceId, devId) != 0) {
continue;
}
// Iterate over the endpoints tied to the deviceId
for (gint j = 0; j < d->numEndPoints; j++) {
struct endPoint_t* eP = &(d->endPoints[j]);
//DEBUG_PC("looked endPointId: %s", eP->endPointId.endpoint_uuid);
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
if (strcmp(eP->endPointId.endpoint_uuid, endPointUuid) == 0) {
return eP;
}
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Adding the edge/linnk in the targetedNodes w list
*
* @param w
* @param l
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void add_edge_in_targetedVertice_set(struct targetNodes_t* w, struct link_t* l) {
//DEBUG_PC("\t targetedVertex: %s", w->tVertice.nodeId);
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
w->numEdges++;
struct edges_t* e = &(w->edges[w->numEdges - 1]);
// Copy the link Id UUID
duplicate_string(e->linkId, l->linkId);
// copy the deviceId and endpointsIds (A --> Z)
struct link_endpointId_t* aEndpointId = &(l->linkEndPointId[0]);
duplicate_string(e->aNodeId.nodeId, aEndpointId->deviceId);
duplicate_string(e->aEndPointId, aEndpointId->endPointId);
duplicate_string(e->aTopologyId, aEndpointId->topology_id.topology_uuid);
struct link_endpointId_t* zEndpointId = &(l->linkEndPointId[1]);
duplicate_string(e->zNodeId.nodeId, zEndpointId->deviceId);
duplicate_string(e->zEndPointId, zEndpointId->endPointId);
duplicate_string(e->zTopologyId, zEndpointId->topology_id.topology_uuid);
// The potential and available capacity is indeed retrieved using aEndpointId in the deviceList
struct endPoint_t* eP = find_device_tied_endpoint(aEndpointId->deviceId, aEndpointId->endPointId);
if (eP == NULL) {
DEBUG_PC("devId: %s endPointUuid: %s NOT in Device List!!--- Weird", aEndpointId->deviceId, aEndpointId->endPointId);
exit(-1);
}
//Potential(total) and available capacity
e->unit = eP->potential_capacity.unit;
memcpy(&e->totalCap, &eP->potential_capacity.value, sizeof(gdouble));
memcpy(&e->availCap, &eP->available_capacity.value, sizeof(gdouble));
// Copy interdomain local/remote Ids
memcpy(e->interDomain_localId, eP->inter_domain_plug_in.inter_domain_plug_in_local_id,
strlen(eP->inter_domain_plug_in.inter_domain_plug_in_local_id));
memcpy(e->interDomain_remoteId, eP->inter_domain_plug_in.inter_domain_plug_in_remote_id,
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
strlen(eP->inter_domain_plug_in.inter_domain_plug_in_remote_id));
// cost value
memcpy(&e->cost, &l->cost_characteristics.cost_value, sizeof(gdouble));
// latency
memcpy(&e->delay, &l->latency_characteristics.fixed_latency, sizeof(gdouble));
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Searching a specific edge/link by the linkId(UUID)
*
* @param w
* @param l
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* find_edge_in_targetedVertice_set(struct targetNodes_t* w, struct link_t* l) {
for (gint i = 0; i < w->numEdges; i++) {
struct edges_t* e = &(w->edges[i]);
if (strcmp(e->linkId, l->linkId) == 0) {
return e;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief supporting the construction of the graph per context using the explicit
* contents/info of the link list
*
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_linklList(struct contextSet_t* set) {
g_assert(set);
// for each link in linkList:
// 1st- Retrieve endpoints A --> B feauture (context Id, device Id, endpoint Id)
// 2st - In the graph associated to the contextId, check wheter A (deviceId) is in the vertices list
// o No, this is weird ... exist
// o Yes, get the other link endpoint (i.e., B) and check whether it exists. If NOT add it, considering
// all the attributes; Otherwise, check whether the link is different from existing edges between A and B
for (gint j = 0; j < linkList->numLinks; j++) {
struct link_t* l = &(linkList->links[j]);
// link assumed to be P2P A --> B; I.e. 2 endPoints; 1st specifies A and 2nd specifie B
struct link_endpointId_t* aEndpointId = &(l->linkEndPointId[0]);
struct topology_id_t* topologyId = &(aEndpointId->topology_id);
// get the contextId
gchar contextUuid[UUID_CHAR_LENGTH];
duplicate_string(contextUuid, topologyId->contextId);
//DEBUG_PC("Link: %s in Context: %s", l->linkId, contextUuid);
// Check first contextUuid exists in the cSet
struct context_t* c = find_contextId_in_set(contextUuid, set);
if (c == NULL) {
DEBUG_PC("ContextId: %s does NOT exist... weird", contextUuid);
exit(-1);
}
// get the device ID of A
gchar aDeviceId[UUID_CHAR_LENGTH];
duplicate_string(aDeviceId, aEndpointId->deviceId);
struct graph_t* g = &(c->g); // get the graph associated to the context c
struct vertices_t* v = find_vertex_in_graph_context(g, aDeviceId);
if (v == NULL) {
DEBUG_PC("aDeviceId: %s IS NOT IN Vertices of contextId: %s", aDeviceId, contextUuid);
exit(-1);
}
// get the bEndpointId
struct link_endpointId_t* bEndpointId = &(l->linkEndPointId[1]);
gchar bDeviceId[UUID_CHAR_LENGTH];
duplicate_string(bDeviceId, bEndpointId->deviceId);
// Check whether device B is in the targeted Vertices from A (i.e., v)?
// If not, add B in the targeted vertices B + create the edge and add it
// If B exist, check whether the explored link/edge is already in the list of edges
struct targetNodes_t* w = find_targeted_vertex_in_graph_context(v, bDeviceId);
if (w == NULL) {
//DEBUG_PC("B device [%s] is PEER of A device [%s]", bDeviceId, v->verticeId.nodeId);
w = add_targeted_vertex_in_graph_context(v, bDeviceId);
add_edge_in_targetedVertice_set(w, l);
}
else {
// w exists, it is needed to check whether the edge (link) should be added
struct edges_t* e = find_edge_in_targetedVertice_set(w, l);
if (e == NULL) {
// Add the link into the list
add_edge_in_targetedVertice_set(w, l);
}
else {
DEBUG_PC("The link already exists ...");
continue;
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Create the set of (distinct) contexts with the deviceList and linkList
*
* @param cSet
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet(struct contextSet_t* cSet) {
g_assert(cSet);
g_assert(deviceList);
g_assert(linkList);
// devices are tied to contexts, i.e. depending on the contextId of the devices
build_contextSet_deviceList(cSet);
// Once the diverse contexts are created and the devices/endpoints asigned to the
// respective graph tied to each context, it is needed to create the edges
build_contextSet_linklList(cSet);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Print the contents of the ContextIds
*
* @param set
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_contextSet(struct contextSet_t* set) {
g_assert(set);
for (gint i = 0; i < set->num_context_set; i++) {
struct context_t* c = &(set->contextList[i]);
DEBUG_PC("-------------------------------------------------------------");
DEBUG_PC(" Context Id: %s", c->contextId);
DEBUG_PC("-------------------------------------------------------------");
struct graph_t* g = &(c->g);
for (gint j = 0; j < g->numVertices; j++) {
struct vertices_t* v = &(g->vertices[j]);
DEBUG_PC(" Head Device Id: %s", v->verticeId.nodeId);
for (gint k = 0; k < v->numTargetedVertices; k++) {
struct targetNodes_t* w = &(v->targetedVertices[k]);
DEBUG_PC(" [%d] --- Peer Device Id: %s", k, w->tVertice.nodeId);
for (gint l = 0; l < w->numEdges; l++) {
struct edges_t* e = &(w->edges[l]);
DEBUG_PC(" \t link Id: %s", e->linkId);
DEBUG_PC(" \t aEndPointId: %s", e->aEndPointId);
DEBUG_PC(" \t zEndPointId: %s", e->zEndPointId);
DEBUG_PC(" \t Available Capacity: %f, Latency: %f, Cost: %f", e->availCap, e->delay, e->cost);
DEBUG_PC(" \t aTopologyId: %s", e->aTopologyId);
DEBUG_PC(" \t zTopologyId: %s", e->zTopologyId);
}
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Check whether src and dst PE nodeId of the req are the same
*
* @param r
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
gint same_src_dst_pe_nodeid(struct service_t* s)
{
// Check that source PE and dst PE are NOT the same, i.e., different ingress and egress endpoints (iEp, eEp)
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[0]);
struct service_endpoints_id_t* eEp = &(s->service_endpoints_id[1]);
gchar* iEpUUID = iEp->endpoint_uuid;
gchar* eEpUUID = eEp->endpoint_uuid;
gchar* iDevUUID = iEp->device_uuid;
gchar* eDevUUID = eEp->device_uuid;
// Compare the device uuids
if (strcmp(iDevUUID, eDevUUID) != 0) {
DEBUG_PC("DIFFERENT --- iDevId: %s and eDevId: %s", iDevUUID, eDevUUID);
return 1;
}
// Compare the endpoints (ports)
if (strcmp(iEpUUID, eEpUUID) != 0) {
DEBUG_PC("DIFFERENT --- iEpUUID: %s and eEpUUID: %s", iEpUUID, eEpUUID);
return 1;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Handles issues with the route computation
*
* @param route
* @param s
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void comp_route_connection_issue_handler (struct compRouteOutput_t *path, struct service_t *s)
{
g_assert(path);
g_assert(s);
// Increase the number of computed routes/paths despite there was an issue to be reported
path->numPaths++;
// Copy the serviceId
copy_service_id(&(path->serviceId), &(s->serviceId));
// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
for (gint i = 0; i < s->num_service_endpoints_id; i++) {
struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[i]);
struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[i]);
copy_service_endpoint_id(oEp, iEp);
}
path->num_service_endpoints_id = s->num_service_endpoints_id;
path->noPathIssue = NO_PATH_CONS_ISSUE;
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief released the allocated memory fo compRouteOutputList_t
*
* @param ro
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_compRouteOutputList (struct compRouteOutputList_t *ro)
{
g_assert (ro);
g_free (ro);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief creates a copy of the underlying graph
*
* @param originalGraph
* @param destGraph
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_graph (struct graph_t *originalGraph, struct graph_t *destGraph) {
g_assert (originalGraph);
g_assert (destGraph);
destGraph->numVertices = originalGraph->numVertices;
for (gint i = 0; i < originalGraph->numVertices; i++) {
struct vertices_t *oVertex = &(originalGraph->vertices[i]);
struct vertices_t *dVertex = &(destGraph->vertices[i]);
dVertex->numTargetedVertices = oVertex->numTargetedVertices;
duplicate_node_id (&oVertex->verticeId, &dVertex->verticeId);
for (gint j = 0; j < oVertex->numTargetedVertices; j++) {
struct targetNodes_t *oTargetedVertex = &(oVertex->targetedVertices[j]);
struct targetNodes_t *dTargetedVertex = &(dVertex->targetedVertices[j]);
duplicate_node_id (&oTargetedVertex->tVertice, &dTargetedVertex->tVertice);
dTargetedVertex->numEdges = oTargetedVertex->numEdges;
for (gint k = 0; k < oTargetedVertex->numEdges; k++) {
struct edges_t *oEdge = &(oTargetedVertex->edges[k]);
struct edges_t *dEdge = &(dTargetedVertex->edges[k]);
duplicate_edge (dEdge, oEdge);
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to retrieve from the graph the edge instance associated to the
* pathLink (pL)
*
* @param pL
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* get_edge_from_graph_by_linkId(struct pathLink_t* pL, struct graph_t* g) {
g_assert(pL);
g_assert(g);
for (gint i = 0; i < g->numVertices; i++) {
struct vertices_t* v = &(g->vertices[i]);
for (gint j = 0; j < v->numTargetedVertices; j++) {
struct targetNodes_t* tv = &(v->targetedVertices[j]);
for (gint k = 0; k < tv->numEdges; k++) {
struct edges_t* e = &(tv->edges[k]);
if (strcmp(e->linkId, pL->linkId) == 0) {
return e;
}
}
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to retrieve from the graph the reverse edge (rev_e) associated to an edge (e)
*
* @param e
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* get_reverse_edge_from_the_graph(struct edges_t* e, struct graph_t* g) {
g_assert(e);
g_assert(g);
for (gint i = 0; i < g->numVertices; i++) {
struct vertices_t* v = &(g->vertices[i]);
// Check Route Element zNodeId with the v->verticeId
if (compare_node_id(&e->zNodeId, &v->verticeId) != 0)
continue;
// Check Route Element zNodeis with any of reachable targeted vertices from v
gboolean foundTargVert = FALSE;
gint indexTargVert = -1;
for (gint j = 0; j < v->numTargetedVertices; j++) {
struct targetNodes_t* tv = &(v->targetedVertices[j]);
if (compare_node_id(&e->aNodeId, &tv->tVertice) == 0)
{
foundTargVert = TRUE;
indexTargVert = j;
break;
}
}
if (foundTargVert == FALSE) {
continue;
}
// The targeted vertice is found, then check matching with the endpoints
struct targetNodes_t* tv = &(v->targetedVertices[indexTargVert]);
for (gint k = 0; k < tv->numEdges; k++) {
struct edges_t* rev_e = &(tv->edges[k]);
if ((strcmp(rev_e->aEndPointId, e->zEndPointId) == 0) &&
(strcmp(rev_e->zEndPointId, e->aEndPointId) == 0)) {
return rev_e;
}
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to reflect in the graph the assigned/allocated resources contained in the path p
* considering the needs (e.g., bandwidth) of service s
*
* @param p
* @param s
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2022
*/
/////////////////////////////////////////////////////////////////////////////////////////
void allocate_graph_resources (struct path_t *p, struct service_t *s, struct graph_t *g)
{
g_assert (p);
g_assert (s);
g_assert (g);
// Retrieve the requested bw by the service
struct path_constraints_t* pathCons = get_path_constraints(s);
for (gint i = 0; i < p->numPathLinks; i++) {
struct pathLink_t* pL = &(p->pathLinks[i]);
// get the edge associated to the linkId in the graph
struct edges_t* e = get_edge_from_graph_by_linkId(pL, g);
if (e == NULL) {
DEBUG_PC("The linkId: %s is NOT found in the Graph!!!", pL->linkId);
exit(-1);
}
//Update the availBw in the edge
gdouble resBw = e->availCap - pathCons->bwConstraint;
DEBUG_PC("Updating the Avail Bw @ edge/link: %s", e->linkId);
DEBUG_PC("Initial avaiCap @ e/link: %f, demanded Bw: %f, resulting Avail Bw: %f", e->availCap, pathCons->bwConstraint, resBw);
memcpy(&e->availCap, &resBw, sizeof(gdouble));
DEBUG_PC("Final e/link avail Bw: %f", e->availCap);
}
g_free(pathCons);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to reflect in the graph the assigned/allocated resources contained in the reverse direction of the path p
* considering the needs (e.g., bandwidth) of service s
*
* @param p
* @param s
* @parma g
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2021
*/
/////////////////////////////////////////////////////////////////////////////////////////
void allocate_graph_reverse_resources(struct path_t* p, struct service_t * s, struct graph_t* g)
{
g_assert(p);
g_assert(s);
g_assert(g);
struct path_constraints_t* pathCons = get_path_constraints(s);
for (gint i = 0; i < p->numPathLinks; i++) {
struct pathLink_t* pL = &(p->pathLinks[i]);
struct edges_t* e = get_edge_from_graph_by_linkId(pL, g);
if (e == NULL) {
DEBUG_PC("The linkId: %s is NOT found in the Graph!!!", pL->linkId);
exit(-1);
}
struct edges_t* rev_e = get_reverse_edge_from_the_graph(e, g);
if (rev_e == NULL) {
DEBUG_PC("the reverse edge of linkId: %s is NOT found in the Graph!!!", pL->linkId);
exit(-1);
}
//Update the availBw in the edge
gdouble resBw = rev_e->availCap - pathCons->bwConstraint;
DEBUG_PC("Updating the Avail Bw @ reverse edge/link: %s", rev_e->linkId);
DEBUG_PC("Initial avaiCap @ reverse edge e/link: %f, demanded Bw: %f, resulting Avail Bw: %f", rev_e->availCap, pathCons->bwConstraint, resBw);
memcpy(&rev_e->availCap, &resBw, sizeof(gdouble));
DEBUG_PC("Final reverse edge e/link avail Bw: %f", rev_e->availCap);
}
g_free(pathCons);
return;
}
////////////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief Function used to printall the computed paths for the requested network connectivity services
*
* @param routeList
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2021
*/
/////////////////////////////////////////////////////////////////////////////////////////
void print_path_connection_list(struct compRouteOutputList_t* routeList) {
g_assert(routeList);
for (gint i = 0; i < routeList->numCompRouteConnList; i++) {
DEBUG_PC("==================== Service Item: %d ===================", i);
struct compRouteOutput_t* rO = &(routeList->compRouteConnection[i]);
DEBUG_PC("num service endpoints: %d", rO->num_service_endpoints_id);
struct serviceId_t* s = &(rO->serviceId);
DEBUG_PC("ContextId: %s, ServiceId: %s", s->contextId, s->service_uuid);
DEBUG_PC("ingress --- %s [%s]", rO->service_endpoints_id[0].device_uuid,
rO->service_endpoints_id[0].endpoint_uuid);
DEBUG_PC("egress --- %s [%s]", rO->service_endpoints_id[1].device_uuid,
rO->service_endpoints_id[1].endpoint_uuid);
if (rO->noPathIssue == NO_PATH_CONS_ISSUE) {
DEBUG_PC("NO PATH SUCCESSFULLY COMPUTED");
continue;
}
// Path
DEBUG_PC("Number of paths: %d", rO->numPaths);
for (gint j = 0; j < rO->numPaths; j++) {
struct path_t* p = &(rO->paths[j]);
print_path_t(p);
}
}
return;
}
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
///////////////////////////////////////////////////////////////////////////////////
/**
* @file pathComp_tools.c
* @brief update statistics for the path computation operations
*
* @param routeConnList
* @param d
*
* @author Ricardo Martínez <ricardo.martinez@cttc.es>
* @date 2021
*/
/////////////////////////////////////////////////////////////////////////////////////////
void update_stats_path_comp(struct compRouteOutputList_t* routeConnList, struct timeval d, gint numSuccesPathComp, gint numPathCompIntents) {
g_assert(routeConnList);
total_path_comp_time.tv_sec = total_path_comp_time.tv_sec + d.tv_sec;
total_path_comp_time.tv_usec = total_path_comp_time.tv_usec + d.tv_usec;
total_path_comp_time = tv_adjust(total_path_comp_time);
gdouble path_comp_time_msec = (((total_path_comp_time.tv_sec) * 1000) + ((total_path_comp_time.tv_usec) / 1000));
gdouble av_alg_comp_time = ((path_comp_time_msec / numSuccesPathComp));
DEBUG_PC("\t --- STATS PATH COMP ----");
DEBUG_PC("Succesfully Comp: %d | Path Comp Requests: %d", numSuccesPathComp, numPathCompIntents);
DEBUG_PC("AV. PATH COMP ALG. TIME: %f ms", av_alg_comp_time);
for (gint i = 0; i < serviceList->numServiceList; i++) {
struct service_t* s = &(serviceList->services[i]);
char* eptr;
for (gint j = 0; j < s->num_service_constraints; j++) {
struct constraint_t* constraints = &(s->constraints[j]);
if (strncmp((const char*)(constraints->constraint_type), "bandwidth", 9) == 0) {
totalReqBw += (gdouble)(strtod((char*)constraints->constraint_value, &eptr));
}
}
}
for (gint k = 0; k < routeConnList->numCompRouteConnList; k++) {
struct compRouteOutput_t* rO = &(routeConnList->compRouteConnection[k]);
if (rO->noPathIssue == NO_PATH_CONS_ISSUE) {
continue;
}
// Get the requested service bw bound to that computed path
struct path_t* p = &(rO->paths[0]);
struct service_t* s = get_service_for_computed_path(rO->serviceId.service_uuid);
if (s == NULL) {
DEBUG_PC("Weird the service associated to a path is not found");
exit(-1);
}
for (gint l = 0; l < s->num_service_constraints; l++) {
struct constraint_t* constraints = &(s->constraints[l]);
char* eptr;
if (strncmp((const char*)(constraints->constraint_type), "bandwidth", 9) == 0) {
totalServedBw += (gdouble)(strtod((char*)constraints->constraint_value, &eptr));
}
}
}
gdouble avServedRatio = totalServedBw / totalReqBw;
DEBUG_PC("AV. Served Ratio: %f", avServedRatio);
gdouble avBlockedBwRatio = (gdouble)(1.0 - avServedRatio);
DEBUG_PC("AV. BBE: %f", avBlockedBwRatio);
return;
}