Skip to content
Snippets Groups Projects
pathComp_tools.c 92.8 KiB
Newer Older
////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	# Copyright 2022 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA) www.cttc.es
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.

 * Author: CTTC/CERCA PONS RU Ricardo Martínez (ricardo.martinez@cttc.es)
 */
/////////////////////////////////////////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h> 
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <glib.h>
#include <sys/time.h>
#include <ctype.h>
#include <strings.h>
#include <time.h>
#include <math.h>
#include <fcntl.h>
#include <uuid/uuid.h>
#include <errno.h>

#include "pathComp_log.h"
#include "pathComp.h"
#include "pathComp_tools.h"

gint numPathCompIntents = 0;  // number of events triggering the path computation
//gint numSuccesPathComp = 0; // number of events resulting in succesfully path computations fulfilling the constraints
struct timeval total_path_comp_time;
gdouble totalReqBw = 0.0;
gdouble totalServedBw = 0.0;

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Function for time processing
 *
 * 	@param a
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 ////////////////////////////////////////////////////////////////////////////////////////
struct timeval tv_adjust (struct timeval a) {
	while (a.tv_usec >= 1000000) {
		a.tv_usec -= 1000000;
		a.tv_sec++;
	}

	while (a.tv_usec < 0) {
		a.tv_usec += 1000000;
		a.tv_sec--;
	}
	return a;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief friendly function to copy safely strings
 *
 * 	@param dst
 *  @param src
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 ////////////////////////////////////////////////////////////////////////////////////////
void duplicate_string(gchar* dst, gchar* src) {
	g_assert(dst);
	g_assert(src);
	strcpy(dst, src);
	dst[strlen(dst)] = '\0';
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Function used to print the computed the path
 *
 *	@param path
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void print_path (struct compRouteOutputItem_t *p) {
	g_assert(p);
	
	DEBUG_PC ("=========== COMPUTED PATH =======================");
	DEBUG_PC ("Path Avail. Bw: %f, E2E Path Latency: %f, Path Cost: %f", p->availCap, p->delay, p->cost);
	for (gint k = 0; k < p->numRouteElements; k++) {
		DEBUG_PC ("aNodeId: %s (%s) --> zNodeId: %s (%s)", p->routeElement[k].aNodeId.nodeId, p->routeElement[k].aEndPointId,
																p->routeElement[k].zNodeId.nodeId, p->routeElement[k].zEndPointId);
		DEBUG_PC("linkId: %s", p->routeElement[k].linkId);
		DEBUG_PC("aTopologyId: %s", p->routeElement[k].aTopologyId);
		DEBUG_PC("zTopologyId: %s", p->routeElement[k].zTopologyId);
	}
	DEBUG_PC ("==================================================================");		
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Function used to print the output path formed by link Ids
 *
 *	@param p
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void print_path_t(struct path_t* p) {
	g_assert(p);
	DEBUG_PC(" ============ COMPUTED OUTPUT PATH =================");
	DEBUG_PC("Path Avail Capacity: %f, Cost: %f, Latency: %f", p->path_capacity.value,
			p->path_cost.cost_value, p->path_latency.fixed_latency);
	DEBUG_PC("number of links of path %d", p->numPathLinks);
	for (gint k = 0; k < p->numPathLinks; k++) {
		DEBUG_PC("Link: %s", p->pathLinks[k].linkId);
		for (gint l = 0; l < p->pathLinks[k].numLinkTopologies; l++) {
			DEBUG_PC("end Link [%d] TopologyId: %s", l, p->pathLinks[k].linkTopologies[l].topologyId);
		DEBUG_PC(" ContextId: %s", p->pathLinks[k].topologyId.contextId);
		DEBUG_PC(" TopologyUUid: %s", p->pathLinks[k].topologyId.topology_uuid);
		DEBUG_PC(" aDeviceId: %s", p->pathLinks[k].aDeviceId);
		DEBUG_PC(" aEndpointId: %s", p->pathLinks[k].aEndPointId);
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Returns the char (36 bytes) format of a uuid
 *
 *	@param uuid
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
gchar* get_uuid_char(uuid_t uuid) {
	gchar* uuidChar = g_malloc0(16); // uuid has 36 chars
	if (uuidChar == NULL) {
		DEBUG_PC("Memory Allocation failure");
		exit(-1);
	}
	uuid_unparse(uuid, (char *)uuidChar);
	return uuidChar;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Makes a copy of the service identifier (including the context)
 *
 *	@param o
 *  @param i
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void copy_service_id(struct serviceId_t* o, struct serviceId_t* i) {
	g_assert(o);
	g_assert(i);

	memcpy(o->contextId, i->contextId, sizeof(i->contextId));
	memcpy(o->service_uuid, i->service_uuid, sizeof(i->service_uuid));

	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Makes a copy of the service endpoint identifier (including the topology (contect and topology id), device and endpoint (port))
 *
 *	@param oEp
 *  @param iEp
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void copy_service_endpoint_id(struct service_endpoints_id_t* oEp, struct service_endpoints_id_t* iEp) {
	g_assert(oEp);
	g_assert(iEp);

	// copy topology information
	memcpy(oEp->topology_id.contextId, iEp->topology_id.contextId, sizeof(iEp->topology_id.contextId));
	memcpy(oEp->topology_id.topology_uuid, iEp->topology_id.topology_uuid, sizeof(iEp->topology_id.topology_uuid));

	// copy the endpoint
	memcpy(oEp->device_uuid, iEp->device_uuid, sizeof(iEp->device_uuid));
	memcpy(oEp->endpoint_uuid, iEp->endpoint_uuid, sizeof(iEp->endpoint_uuid));
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief From the set of contexts, it is returned the graph associated to that contexct matching
 * with the passed contextId
 *
 *	@param Set
 *  @param contextId
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct graph_t* get_graph_by_contextId(struct contextSet_t* Set, gchar* contextId) {
	g_assert(Set);
	g_assert(contextId);

	// iterate over the set of context. Pick the one matching with contextId, and return the graph.
	// If not found, return NULL
	struct graph_t* g = NULL;
	for (gint i = 0; i < Set->num_context_set; i++) {
		struct context_t* context = &(Set->contextList[i]);
		if (strcmp(context->contextId, contextId) == 0) {
			g = &(context->g);
			return g;
		}
	}
	return NULL;
}

///////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Process the service constraint and maps them into the path constraints
 * to be fulfilled
 *
 *  @param path_constraints
 *  @param s
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct path_constraints_t * get_path_constraints(struct service_t* s) {
	g_assert(s);
	
	struct path_constraints_t* path_constraints = g_malloc0(sizeof(struct path_constraints_t));
	if (path_constraints == NULL) {
		DEBUG_PC("Memory Allocation Failure");
		exit(-1);
	}

	char* eptr;
	for (gint i = 0; i < s->num_service_constraints; i++) {
		struct constraint_t* constraint = &(s->constraints[i]);;
		if (strncmp((const char*)constraint->constraint_type, "bandwidth", 9) == 0) {
			path_constraints->bwConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
			path_constraints->bw = TRUE;
			//DEBUG_PC("Path Constraint Bw: %f", path_constraints->bwConstraint);
		}
		if (strncmp((const char*)constraint->constraint_type, "cost", 4) == 0) {
			path_constraints->costConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
			path_constraints->cost = TRUE;
			//DEBUG_PC("Path Constraint Cost: %f", path_constraints->costConstraint);
		}
		if (strncmp((const char*)constraint->constraint_type, "latency", 7) == 0) {
			path_constraints->latencyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
			path_constraints->latency = TRUE;
			//DEBUG_PC("Path Constraint Latency: %f", path_constraints->latencyConstraint);
		}
		if (strncmp((const char*)constraint->constraint_type, "energy", 6) == 0) {
			path_constraints->energyConstraint = (gdouble)(strtod((char*)constraint->constraint_value, &eptr));
			path_constraints->energy = TRUE;
			//DEBUG_PC("Path Constraint Energy: %f", path_constraints->energyConstraint);
		}
	}
	return path_constraints;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Creates the predecessors to keep the computed path
 *
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
struct pred_t * create_predecessors ()
{
	struct pred_t *predecessors = g_malloc0 (sizeof (struct pred_t));
	if (predecessors == NULL)
	{
		DEBUG_PC ("memory allocation failed\n");
		exit (-1);
	}   
	return predecessors;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief create edge
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* create_edge()
{
	struct edges_t* e = g_malloc0(sizeof(struct edges_t));
	if (e == NULL)
	{
		DEBUG_PC("Memory allocation failed\n");
		exit(-1);
	}
	return e;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Prints the list of the predecessors for a given computed Shortest Path
 *
 *	@param p 
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void print_predecessors (struct pred_t *p)
{
	g_assert (p);
	DEBUG_PC ("Number of Predecessors: %d", p->numPredComp);
	for (gint i = 0; i < p->numPredComp; i++) {
		struct pred_comp_t *pComp = &(p->predComp[i]);
		DEBUG_PC ("deviceId: %s", pComp->v.nodeId);		
		struct edges_t *e = &(pComp->e);
		DEBUG_PC("Edge[#%d] (linkId): %s", i, e->linkId);
		DEBUG_PC ("\t %s[%s] ===>", e->aNodeId.nodeId, e->aEndPointId);
		DEBUG_PC("\t %s[%s]", e->zNodeId.nodeId, e->zEndPointId);
		DEBUG_PC("\t aTopologyId: %s", e->aTopologyId);
		DEBUG_PC("\t zTopologyId: %s", e->zTopologyId);
	}	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Builds the list of predecessors for the request destination using the computed Shortest Path
 *	being stored in map
 *
 *	@param p 
 *	@param s
 *	@param map
 *	
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void build_predecessors (struct pred_t *p, struct service_t *s, struct map_nodes_t *map)
{
	g_assert (p);
	g_assert (s);
	g_assert (map);
	
	struct nodes_t *v = create_node();
	duplicate_string(v->nodeId, s->service_endpoints_id[1].device_uuid);
	
	struct edges_t *e = create_edge ();	
	get_edge_from_map_by_node (e, v, map);
			
	// Get u (being source of edge e)
	struct nodes_t u;	
	duplicate_node_id (&e->aNodeId, &u);
		
	// Add to the predecessors list
	struct pred_comp_t *pred = &(p->predComp[p->numPredComp]);
	duplicate_node_id (&u, &pred->v);	
	struct edges_t *e1 = &(pred->e);	
	duplicate_edge (e1, e);
	p->numPredComp++;	
	// Back-trace edges till reaching the srcPEId
	struct nodes_t* srcNode = create_node();
	duplicate_string(srcNode->nodeId, s->service_endpoints_id[0].device_uuid);

	while (compare_node_id (&u, srcNode) != 0) 	{		
		duplicate_node_id (&u, v);
		get_edge_from_map_by_node (e, v, map);		
		// Get the u (being source of edge e)		
		duplicate_node_id (&e->aNodeId, &u);		
		// Get the new predecessor
		struct pred_comp_t *pred = &p->predComp[p->numPredComp];			
		// Add to the predecessors list					
		duplicate_node_id (&u, &pred->v);		
		struct edges_t *e1 = &(pred->e);
		duplicate_edge (e1, e);
		p->numPredComp++;		
	}
	print_predecessors (p);
    g_free (e);
	g_free(v);
	g_free(srcNode);
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief It creates a struct nodes_t
 *
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
struct nodes_t * create_node ()
{
	struct nodes_t *n = g_malloc0 (sizeof (struct nodes_t));
	if (n == NULL) {
		DEBUG_PC ("memory allocation problem");
		exit (-1);
	}
	return n;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief It creates a routeElement_t
 *
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
struct routeElement_t * create_routeElement ()
{
	struct routeElement_t *rE = g_malloc0 (sizeof (struct routeElement_t));
	if (rE == NULL)
	{
		DEBUG_PC ("memory allocation problem");
		exit (-1);		
	}
	return rE;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief copy node ids
 *
 *	@param src
 *  @param dst
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_node_id (struct nodes_t *src, struct nodes_t *dst)
{	
	g_assert (src);
	g_assert (dst);
	
	//DEBUG_PC ("Duplicate nodeId for %s", src->nodeId);	
	strcpy (dst->nodeId, src->nodeId);	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief compares a pair of node Ids
 *
 *	@param a
 *  @param b
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint compare_node_id (struct nodes_t *a, struct nodes_t *b)
{
	g_assert (a);
	g_assert (b);	
	return (memcmp (&a->nodeId, b->nodeId, strlen (b->nodeId)));	
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief duplicate two routeElement_t
 *
 *	@param src
 *  @param dst
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_routeElement (struct routeElement_t *src, struct routeElement_t *dst)
{
	g_assert (src);
	g_assert (dst);
	
	duplicate_node_id (&(src->aNodeId), &(dst->aNodeId));
	duplicate_node_id (&(src->zNodeId), &(dst->zNodeId));
	duplicate_string(dst->aEndPointId, src->aEndPointId);
	duplicate_string(dst->zEndPointId, src->zEndPointId);
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief duplicate two edges
 *
 *	@param e1 (destination)
 *  @param e2 (source)
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_edge (struct edges_t *e1, struct edges_t *e2) {
	g_assert (e1);
	g_assert (e2);
		
	duplicate_node_id (&e2->aNodeId, &e1->aNodeId);
	duplicate_node_id (&e2->zNodeId, &e1->zNodeId);
	//DEBUG_PC ("e->aNodeId: %s --->  e->zNodeId: %s", e1->aNodeId.nodeId, e1->zNodeId.nodeId);
	duplicate_string(e1->aEndPointId, e2->aEndPointId);
	duplicate_string(e1->zEndPointId, e2->zEndPointId);
	duplicate_string(e1->linkId, e2->linkId);
	duplicate_string(e1->interDomain_localId, e2->interDomain_localId);
	duplicate_string(e1->interDomain_remoteId, e2->interDomain_remoteId);
	duplicate_string(e1->aTopologyId, e2->aTopologyId);
	duplicate_string(e1->zTopologyId, e2->zTopologyId);
	
	e1->unit = e2->unit;
	memcpy(&e1->totalCap, &e2->totalCap, sizeof(gdouble));
	memcpy(&e1->availCap, &e2->availCap, sizeof(gdouble));

	memcpy (&e1->cost, &e2->cost, sizeof (gdouble));
    memcpy (&e1->delay, &e2->delay, sizeof (gdouble));	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Duplicate path 
 *
 *	@param a - original
 *  @param b - copy
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path (struct compRouteOutputItem_t *a, struct compRouteOutputItem_t *b) {		
	g_assert (a);
	g_assert (b);
	memcpy (&b->availCap, &a->availCap, sizeof (gdouble));
	b->numRouteElements = a->numRouteElements;	
	memcpy(&b->cost, &a->cost, sizeof(gdouble));	
	memcpy (&b->delay, &a->delay, sizeof (gdouble));
	for (gint k = 0; k < a->numRouteElements; k++) {			
		//DEBUG_PC ("aNodeId: %s // zNodeId: %s", a->routeElement[k].aNodeId.nodeId, a->routeElement[k].zNodeId.nodeId);
		// aNodeId duplication
		struct nodes_t *n1 = &(a->routeElement[k].aNodeId);
		struct nodes_t *n2 = &(b->routeElement[k].aNodeId);			
		duplicate_node_id (n1, n2);			
					
		//zNodeId duplication
		n1 = &(a->routeElement[k].zNodeId);
		n2 = &(b->routeElement[k].zNodeId);			
		duplicate_node_id (n1, n2);
		duplicate_string(b->routeElement[k].aEndPointId, a->routeElement[k].aEndPointId);
		duplicate_string(b->routeElement[k].zEndPointId, a->routeElement[k].zEndPointId);
		duplicate_string(b->routeElement[k].linkId, a->routeElement[k].linkId);
		duplicate_string(b->routeElement[k].aTopologyId, a->routeElement[k].aTopologyId);
		duplicate_string(b->routeElement[k].zTopologyId, a->routeElement[k].zTopologyId);
	}	
	return;	
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Duplicate path from compRouteOutputItem_t to path_t
 *
 *	@param a - original
 *  @param b - copy
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void duplicate_path_t(struct compRouteOutputItem_t* a, struct path_t* b)
{
	g_assert(a);
	g_assert(b);

	memcpy(&b->path_capacity.value, &a->availCap, sizeof(gdouble));
	memcpy(&b->path_cost.cost_value, &a->cost, sizeof(gdouble));
	memcpy(&b->path_latency.fixed_latency, &a->delay, sizeof(gdouble));

	b->numPathLinks = a->numRouteElements;

	for (gint k = 0; k < a->numRouteElements; k++) {
		struct routeElement_t* rE = &(a->routeElement[k]);
		struct pathLink_t* pL = &(b->pathLinks[k]);

		// copy the aDeviceId and aEndpointId, zDeviceId and zEndPointId
		duplicate_string(pL->aDeviceId, rE->aNodeId.nodeId);
		duplicate_string(pL->zDeviceId, rE->zNodeId.nodeId);
		duplicate_string(pL->aEndPointId, rE->aEndPointId);
		duplicate_string(pL->zEndPointId, rE->zEndPointId);

		duplicate_string(pL->topologyId.topology_uuid, rE->aTopologyId);
		duplicate_string(pL->topologyId.contextId, rE->contextId);

		//copy the linkId
		duplicate_string(pL->linkId, rE->linkId);
		pL->numLinkTopologies++;
		duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->aTopologyId);
		pL->numLinkTopologies++;
		duplicate_string(pL->linkTopologies[pL->numLinkTopologies - 1].topologyId, rE->zTopologyId);
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Return the index into mapN related nodeId
 * 
 *  @param nodeId
 *  @para mapN
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint get_map_index_by_nodeId (gchar *nodeId, struct map_nodes_t * mapN)
{
    gint index = -1;
    gint i = 0;
    
    for (i = 0; i < mapN->numMapNodes; i++)
    {
		//DEBUG_PC ("i: %d; current: %s // targeted: %s", i, mapN->map[i].verticeId.nodeId, nodeId);
        if (memcmp (mapN->map[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0)
        {
            index = i;
			//DEBUG_PC ("Index: %d", index);
            return index;            
        }
    }
	//DEBUG_PC ("Index: %d", index);
    return index;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Get the edge e enabling reaching the computed v in mapNodes
 * 
 *  @param e
 *  @param v
 *  @param mapN
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_map_by_node (struct edges_t *e, struct nodes_t* v, struct map_nodes_t *mapN) {
	
	//DEBUG_PC ("Get the Edge into map from node v: %s", v.nodeId);	
	// Get the edge reaching the node v from mapNodes
	gint map_vIndex = get_map_index_by_nodeId (v->nodeId, mapN);
	
	//DEBUG_PC ("aNodeId: %s --> zNodeId: %s", mapN->map[map_vIndex].predecessor.aNodeId.nodeId, mapN->map[map_vIndex].predecessor.zNodeId.nodeId);
	
	struct edges_t *te = &(mapN->map[map_vIndex].predecessor);	
	duplicate_edge (e, te);
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Get the edge from the predecessors array for a given node n
 * 
 *  @param e
 *  @param n
 *  @param predecessors
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void get_edge_from_predecessors (struct edges_t *e, struct nodes_t* n, struct pred_t *predecessors) {
	g_assert(predecessors);

	DEBUG_PC ("Get edge outgoing node %s from predecessors list", n->nodeId);
	//print_predecessors (predecessors);
	for (gint i = 0; i < predecessors->numPredComp; i++) {
		struct pred_comp_t *pred = &(predecessors->predComp[i]);
		if (compare_node_id (n, &pred->v) == 0) {
			// Add to the predecessors list
			struct edges_t *te = &(pred->e);
			DEBUG_PC("add e (linkId): %s", te->linkId);
			duplicate_edge (e, te);
			return;
		}	
	}	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Construct the path using the predecessors list
 * 
 *  @param path
 *  @param predecessors
 *	@param s
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void build_path (struct compRouteOutputItem_t *p, struct pred_t *predecessors, struct service_t *s) {
	//DEBUG_PC ("\n");
	// Get the source device Id	of the network connectivity service
	struct nodes_t *v = create_node();
	duplicate_string(v->nodeId, s->service_endpoints_id[0].device_uuid);

	struct edges_t* e = create_edge();
							  	
	// Get the edge for v in predecessors
	get_edge_from_predecessors (e, v, predecessors);	
	// Get the target for e
	struct nodes_t u;	
	duplicate_node_id (&e->zNodeId, &u);
	//DEBUG_PC ("u: %s", u.nodeId);
	struct path_constraints_t* pathCons = get_path_constraints(s);		

	// Add route element to the path being constructed
	gint k = 0;
	duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
	duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
	duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
	duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
	duplicate_string(p->routeElement[k].linkId, e->linkId);
	duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
	duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
	duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);
	p->numRouteElements++;

	// Get the destination device Id of the network connectivity service
	struct nodes_t* dst = create_node();
	duplicate_string(dst->nodeId, s->service_endpoints_id[1].device_uuid);
	while (compare_node_id (&u, dst) != 0)	
	{
		k++; 
		p->numRouteElements++;
		// v = u		
		duplicate_node_id (&u, v);
		get_edge_from_predecessors (e, v, predecessors);
		// Get the target u		
		duplicate_node_id (&e->zNodeId, &u);
		// Add route element to the path being constructed		
		duplicate_node_id (&e->aNodeId, &p->routeElement[k].aNodeId);
		duplicate_node_id (&e->zNodeId, &p->routeElement[k].zNodeId);
		duplicate_string(p->routeElement[k].aEndPointId, e->aEndPointId);
		duplicate_string(p->routeElement[k].zEndPointId, e->zEndPointId);
		duplicate_string(p->routeElement[k].linkId, e->linkId);
		duplicate_string(p->routeElement[k].aTopologyId, e->aTopologyId);
		duplicate_string(p->routeElement[k].zTopologyId, e->zTopologyId);
		duplicate_string(p->routeElement[k].contextId, s->serviceId.contextId);

		// copy the contextId
		//duplicate_string(p->routeElement[k].contextId, s->service_endpoints_id[0].topology_id.contextId);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	}		
	g_free(e); g_free(v); g_free(pathCons);
	//DEBUG_PC ("Path is constructed");	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Print the graph for DEBUG_PCging purposes
 * 
 *  @param g
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void print_graph (struct graph_t *g)
{	     
    DEBUG_PC ("================================================================");
    DEBUG_PC ("===========================   GRAPH   ==========================");
    DEBUG_PC ("================================================================");

	DEBUG_PC("Graph Num Vertices: %d", g->numVertices);
    
    gint i = 0, j = 0, k = 0;
    for (i = 0; i < g->numVertices; i++)
    {
        DEBUG_PC ("Head Vertice [%s]", g->vertices[i].verticeId.nodeId);
        for (j = 0; j < g->vertices[i].numTargetedVertices; j++)
        {
            DEBUG_PC ("  Tail Vertice: %s", g->vertices[i].targetedVertices[j].tVertice.nodeId);
            for (k = 0; k < g->vertices[i].targetedVertices[j].numEdges; k++)
            {
                struct edges_t *e = &(g->vertices[i].targetedVertices[j].edges[k]);
				DEBUG_PC ("%s(%s) --> %s(%s) [C: %f, Bw: %f b/s, Delay: %f ms]", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, 
								e->zEndPointId, e->cost, e->availCap, e->delay);				
           }
        }       
    }     
    return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Look for a given edge into the graph
 *
 *  @param verticeIndex
 *	@param targetedVerticeIndex
 *  @param e
 *  @param g
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_edge_lookup (gint verticeIndex, gint targetedVerticeIndex, struct edges_t *e, struct graph_t *g)	{
	gint indexEdge = -1;
	
	for (gint j = 0; j < g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].numEdges; j++) {
		struct edges_t *e2 = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex].edges[j]);
		if ((compare_node_id (&e->aNodeId, &e2->aNodeId) == 0) &&
			(compare_node_id (&e->zNodeId, &e2->zNodeId) == 0) &&
			(strcmp (e->aEndPointId, e2->aEndPointId) == 0) &&
			(strcmp (e->zEndPointId, e2->zEndPointId) == 0) &&
			(strcmp(e->linkId, e2->linkId) == 0)) {
			DEBUG_PC ("%s (%s) --> %s (%s) [linkId: %s] FOUND in the Graph at index: %d", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, 
							e->zEndPointId, e->linkId, j);
			indexEdge = j;
			return indexEdge;
		}		
	}	
	return indexEdge;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Look for a given vertice within the graph using the nodeId
 *
 *  @param nodeId
 *	@param g
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_vertice_lookup (gchar *nodeId, struct graph_t *g)
{
    gint index = -1; 
	//DEBUG_PC("Searching Node: %s", nodeId);
    for (gint i = 0; i < g->numVertices; i++) {
		//DEBUG_PC("Checked Graph Node: %s", g->vertices[i].verticeId.nodeId);
		if (memcmp (g->vertices[i].verticeId.nodeId, nodeId, strlen (nodeId)) == 0)
        {
            index = i;
            //DEBUG_PC ("%s is found in the graph vertice [%d]", nodeId, index);
            break;
        }     
    }  
    return (index);
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice
 *
 *  @param nodeId
 *  @param vIndex
 *  @param g
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_lookup (gint vIndex, gchar *nodeId, struct graph_t *g)
{
    gint addedTargetedVerticeIndex = -1;
    gint i = 0;
    
    if (g->vertices[vIndex].numTargetedVertices == 0)
    {
        return (addedTargetedVerticeIndex);
    }
    
    for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
    {
        if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
        {
            DEBUG_PC ("Targeted %s reachable from %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
            addedTargetedVerticeIndex = i;
            return (addedTargetedVerticeIndex);
        }        
    }    
    // not found ...    
    return (addedTargetedVerticeIndex);
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Check if a nodeId is already considered into the set of targeted vertices from a given vertice, if not to be added
 *
 *  @param nodeId
 *  @param vIndex
 *  @param g
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint graph_targeted_vertice_add (gint vIndex, gchar *nodeId, struct graph_t *g)
{
    gint addedTargetedVerticeIndex = -1;
    gint i = 0;
    
    if (g->vertices[vIndex].numTargetedVertices == 0)
    {
        //DEBUG_PC ("targeted vertice %s being reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);        
        addedTargetedVerticeIndex = 0;
        return (addedTargetedVerticeIndex);
    }
    
    for (i = 0; i < g->vertices[vIndex].numTargetedVertices; i++)
    {        
		if (memcmp (g->vertices[vIndex].targetedVertices[i].tVertice.nodeId, nodeId, strlen (nodeId)) == 0)
        {
            //DEBUG_PC ("Targeted vertice %s is already considered in the reachable from vertice %s", nodeId, g->vertices[vIndex].verticeId.nodeId);
            addedTargetedVerticeIndex = -1;
            return (addedTargetedVerticeIndex);
        }        
    }    
    // It is not found, next to be added at i position
    addedTargetedVerticeIndex = i;
    return (addedTargetedVerticeIndex);
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Remove edge from the graph
 *
 *  @param g
 *  @param e
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
void remove_edge_from_graph (struct graph_t *g, struct edges_t *e)
{
	// Find the ingress vertice into the graph
	DEBUG_PC ("Removing from Graph %s[%s]) ---> %s[%s] (linkId: %s)", e->aNodeId.nodeId, e->aEndPointId, e->zNodeId.nodeId, e->aEndPointId, e->linkId);
	gint verticeIndex = -1;		
	verticeIndex = graph_vertice_lookup (e->aNodeId.nodeId, g);
	if (verticeIndex == -1)	{
		DEBUG_PC ("Edge w/ %s is NOT in the Graph!!", e->aNodeId.nodeId);
		return;
	}
	
	// Find the targeted vertice from vertice Id
	gint targetedVerticeIndex = -1;
	targetedVerticeIndex = graph_targeted_vertice_lookup (verticeIndex, e->zNodeId.nodeId, g);
	if (targetedVerticeIndex == -1)	{
		DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
		return;
	}
	
	//DEBUG_PC ("%s --> %s found in the Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);
	
	// Get the edge position
	gint edgeIndex = -1;
	edgeIndex = graph_edge_lookup (verticeIndex, targetedVerticeIndex, e, g);
	if (edgeIndex == -1) 	{
		DEBUG_PC ("%s --> %s NOT in the Graph!!", e->aNodeId.nodeId, e->zNodeId.nodeId);
		return;
	}
	
	//DEBUG_PC ("%s --> %s FOUND in Graph w/ edgeIndex: %d", e->aNodeId.nodeId, e->zNodeId.nodeId, edgeIndex);
	
	// Remove the edge
	//DEBUG_PC ("Start Removing %s --> %s from Graph", e->aNodeId.nodeId, e->zNodeId.nodeId);	
	struct targetNodes_t *v = &(g->vertices[verticeIndex].targetedVertices[targetedVerticeIndex]);	
	for (gint j = edgeIndex; j < v->numEdges; j++) {	
		struct edges_t *e1 = &(v->edges[j]);
		struct edges_t *e2 = &(v->edges[j+1]);		
		duplicate_edge (e1, e2);
	}
	v->numEdges --;
	DEBUG_PC ("Number of Edges between %s and %s is %d", e->aNodeId.nodeId, e->zNodeId.nodeId, v->numEdges);	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief create the pointer for keeping a set of the paths (struct compRouteOutput_t)
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
struct path_set_t * create_path_set ()
{
	struct path_set_t * p = g_malloc0 (sizeof (struct path_set_t));
	if (p == NULL)
	{
		DEBUG_PC ("Memory allocation problem");
		exit (-1);		
	}
	return p;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Remove the path set
 *
 * @param p
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2021
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void remove_path_set(struct path_set_t* p)
{
	g_assert(p);
	g_free(p);
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Create map of nodes to handle the path computation
 *
 * 	@param mapN
 *  @param g
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void build_map_node (struct map_nodes_t *mapN, struct graph_t *g)
{
	//DEBUG_PC ("Construction of the Map of Nodes");               
    for (gint i = 0; i < g->numVertices; i++)
    {	
		duplicate_node_id (&g->vertices[i].verticeId, &mapN->map[i].verticeId);
        mapN->map[i].distance = INFINITY_COST;
        mapN->map[i].avaiBandwidth = 0.0;
        mapN->map[i].latency = INFINITY_COST;
        mapN->numMapNodes++;
    }
    //DEBUG_PC ("mapNodes formed by %d Nodes", mapN->numMapNodes);
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Allocate memory for path of struct compRouteOutputList_t *
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputList_t * create_route_list ()
{
	struct compRouteOutputList_t *p = g_malloc0 (sizeof (struct compRouteOutputList_t));
	if (p == NULL)
	{
		DEBUG_PC ("Memory Allocation Problem");
		exit (-1);
	}
	return p;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Allocate memory for path of struct compRouteOutputItem_t *
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
struct compRouteOutputItem_t *create_path_item ()
{
	struct compRouteOutputItem_t *p = g_malloc0 (sizeof (struct compRouteOutputItem_t));
	if (p == NULL) 	{
		DEBUG_PC ("Memory Allocation Problem");
		exit (-1);
	}
	return p;	
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Sort the set of paths according to the metric (1st criteria) and latency (2nd criteria)
 *
 *	@params setP
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void sort_path_set(struct path_set_t* setP) {
	g_assert(setP);
	// Sort the paths contained in setP by shotest metric and latency	
	float epsilon = 0.0000001;

	for (gint i = 0; i < setP->numPaths; i++) {
		for (gint j = 0; j < (setP->numPaths - i - 1); j++)	{
			struct compRouteOutputItem_t* path1 = &setP->paths[j];
			struct compRouteOutputItem_t* path2 = &setP->paths[j + 1];
			
			struct compRouteOutputItem_t* pathTmp = create_path_item();
			// 1st Criteria (avail Bw)
			if ((path2->availCap - path1->availCap > 0.0) && (fabs(path1->availCap - path2->availCap) > epsilon)) {
				duplicate_path(path1, pathTmp);
				duplicate_path(path2, path1);
				duplicate_path(pathTmp, path2);
				g_free(pathTmp);
				continue;
			}
			else if ((path1->availCap - path2->availCap > 0.0) && (fabs(path1->availCap - path2->availCap) > epsilon)) {
				g_free(pathTmp);
				continue;
			}
			// likely the same available bw between path1 and path2
			else if (fabs(path1->availCap - path2->availCap) < epsilon) {
				// 2nd criteria: sort path cost
				if (path1->cost > path2->cost) {
					duplicate_path(path1, pathTmp);
					duplicate_path(path2, path1);
					duplicate_path(pathTmp, path2);
					g_free(pathTmp);
					continue;
				}
				else if (path1->cost < path2->cost) {
					g_free(pathTmp);
					continue;
				}
				// 3rd criteria: same path cost, prioritize the one with lowest e2e latency
				else if (path1->cost == path2->cost) {
					if ((path2->delay - path1->delay > 0.0) && (fabs(path1->delay - path2->delay) > epsilon)) {
						g_free(pathTmp);
						continue;
					}
					else if ((path1->delay - path2->delay > 0.0) && (fabs(path1->delay - path2->delay) > epsilon)) {
						duplicate_path(path1, pathTmp);
						duplicate_path(path2, path1);
						duplicate_path(pathTmp, path2);
						g_free(pathTmp);
						continue;
					}
					// Same bw, same cost and same latency, path1 and path2 are practically the same
					else if (fabs(path1->delay - path2->delay) < epsilon) {
						g_free(pathTmp);
						continue;
					}
				}
			}			
		}
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Remove first element from the path sets 
 *
 *	@params setP
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void pop_front_path_set (struct path_set_t *setP) {
	for (gint j = 0; j < setP->numPaths - 1; j++) {
		struct compRouteOutputItem_t *path1 = &setP->paths[j];
		struct compRouteOutputItem_t *path2 = &setP->paths[j+1];		
		duplicate_path (path2, path1);		
	}
	setP->numPaths--;	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Add routeElement to the back of the path
 *
 * 	@param rE
 * 	@param p
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void add_routeElement_path_back (struct routeElement_t *rE, struct compRouteOutputItem_t *p)
{
	//DEBUG_PC ("p->numRouteElements: %d", p->numRouteElements);
	p->numRouteElements++;
	gint index = p->numRouteElements - 1;
	
	struct nodes_t *pn = &(p->routeElement[index].aNodeId);
	struct nodes_t *rEn = &(rE->aNodeId);
	
	// duplicate aNodeId
	duplicate_node_id (rEn, pn);	
	pn = &(p->routeElement[index].zNodeId);
	rEn = &(rE->zNodeId);
	duplicate_node_id (rEn, pn);
	duplicate_string(p->routeElement[index].aEndPointId, rE->aEndPointId);
	duplicate_string(p->routeElement[index].zEndPointId, rE->zEndPointId);
	duplicate_string(p->routeElement[index].linkId, rE->linkId);
	duplicate_string(p->routeElement[index].aTopologyId, rE->aTopologyId);
	duplicate_string(p->routeElement[index].zTopologyId, rE->zTopologyId);

	return;
}

///////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief This function compares ap and rootPath. If all the links are equal between both ap and rootPath till the sN, then the link from sN to next node 
 * 	ap is returned
 * 
 * @params ap
 * @params p
 * @params sN
 * @params e
 * 
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gboolean matching_path_rootPath (struct compRouteOutputItem_t *ap, struct compRouteOutputItem_t *rootPath, struct nodes_t *sN, struct edges_t *e) {
	gint j = 0;
	gboolean ret = FALSE;
	while ((j < ap->numRouteElements) && (j < rootPath->numRouteElements)) {
		if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) &&
			//(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0) &&
			(memcmp (sN->nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0)) {						
			duplicate_node_id (&ap->routeElement[j].aNodeId, &e->aNodeId);
			duplicate_node_id (&ap->routeElement[j].zNodeId, &e->zNodeId);
			duplicate_string(e->aEndPointId, ap->routeElement[j].aEndPointId);
			duplicate_string(e->zEndPointId, ap->routeElement[j].zEndPointId);
			duplicate_string(e->linkId, ap->routeElement[j].linkId);
			return TRUE;			
		}		
		if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) == 0) && 
			(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) == 0)) {
			j++;			
			continue;			
		}
		
		if ((memcmp (ap->routeElement[j].aNodeId.nodeId, rootPath->routeElement[j].aNodeId.nodeId, sizeof (ap->routeElement[j].aNodeId.nodeId)) != 0) || 
			(memcmp (ap->routeElement[j].zNodeId.nodeId, rootPath->routeElement[j].zNodeId.nodeId, sizeof (ap->routeElement[j].zNodeId.nodeId)) != 0)) {
			//DEBUG_PC ("ap and rootPath not in the same path");
			return ret;
		}
	}	
	return ret;
}

///////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief This function is used to modify the graph to be used for running the subsequent SP computations acording to the YEN algorithm principles
 * 
 * @params g
 * @params A
 * @params rootPath
 * @params spurNode
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void modify_targeted_graph (struct graph_t *g, struct path_set_t *A, struct compRouteOutputItem_t * rootPath, struct nodes_t * spurNode) {
	//DEBUG_PC ("Modify the Targeted graph according to the Yen algorithm principles");
	for (gint j = 0; j < A->numPaths; j++)
	{
		struct compRouteOutputItem_t *ap = &A->paths[j];
		struct edges_t *e = create_edge ();
		gboolean ret =  FALSE;
		ret = matching_path_rootPath (ap, rootPath, spurNode, e);		
		if (ret == TRUE) {
			//DEBUG_PC ("Removal %s [%u]--> %s [%u] from the graph", e->aNodeId.nodeId, e->aLinkId, e->zNodeId.nodeId, e->zLinkId);
			remove_edge_from_graph (g, e);
			//DEBUG_PC ("Print Resulting Graph");
			//print_graph (g);
			g_free (e);			
		}
		if (ret == FALSE)
		{
			g_free (e);
			continue;
		}						
	}	
	return;
}

///////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Supporting fucntion to Check if a nodeId is already in the items of a given GList
 * 
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint find_nodeId (gconstpointer data, gconstpointer userdata)
{
     /** check values */
     g_assert(data != NULL);
     g_assert(userdata != NULL);
 
     struct nodeItem_t *SNodeId = (struct nodeItem_t *)data;
     guchar * nodeId = (guchar *)userdata; 
     
     //DEBUG_PC ("SNodeId (%s) nodeId (%s)", SNodeId->node.nodeId, nodeId);   
        
     if (!memcmp(SNodeId->node.nodeId, nodeId, strlen (SNodeId->node.nodeId)))
     {
		return (0);
     }
    return -1;
}

///////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Explores the link between u and v
 * 
 *  @param u
 *  @param v 
 *	@param g
 *	@param s
 *  @param S
 *  @param Q
 *	@param mapNodes
 * 
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint check_link (struct nodeItem_t *u, gint indexGraphU, gint indexGraphV, struct graph_t *g, 
				struct service_t *s, GList **S, GList **Q, struct map_nodes_t *mapNodes) { 
	g_assert(g);
	g_assert(s);
	g_assert(mapNodes);

	struct targetNodes_t *v = &(g->vertices[indexGraphU].targetedVertices[indexGraphV]);	
    DEBUG_PC("Explored link (u ===> v):");
	DEBUG_PC("u: %s ====>", u->node.nodeId);
	DEBUG_PC("====> v: %s", v->tVertice.nodeId);
    
    // v already explored in S? then, discard it
    GList *found = g_list_find_custom (*S, v->tVertice.nodeId, find_nodeId);
    if (found != NULL) {
        DEBUG_PC ("v (%s) in S, discard to explore it!", v->tVertice.nodeId);        
        return 0;
    }

	// Get the set of constraints imposed by the service
	struct path_constraints_t* path_constraints = get_path_constraints(s);
    gdouble distance_through_u = INFINITY_COST;
    gdouble latency_through_u = INFINITY_COST;	
	gint i = 0;

    // Check bandwidth requirement is fulfillied on edge u --> v    
    gint foundAvailBw = 0;
    gdouble edgeAvailBw = 0.0;
    for (i = 0; i < v->numEdges; i++) {        
        struct edges_t *e = &(v->edges[i]);
		memcpy (&edgeAvailBw, &(e->availCap), sizeof (gdouble));
		DEBUG_PC("edge:u ===> v");
        DEBUG_PC ("%s[%s] ===>", u->node.nodeId, e->aEndPointId);
		DEBUG_PC("====> %s[%s]", v->tVertice.nodeId, e->zEndPointId);
		DEBUG_PC("edge available bw: %f", edgeAvailBw);

        // if network service constraint specifies "bandwidth" needs (assuming coherent units)
		if (path_constraints->bw == TRUE) {
			if (edgeAvailBw < path_constraints->bwConstraint) {
				continue;
			}
			else {
				foundAvailBw = 1;
				break;
			}
		}		
    }
	// if bw path constraint is specified but not sastified ...	discard the edge
    if ((path_constraints->bw == TRUE) && (foundAvailBw == 0))
    {
        DEBUG_PC ("AvailBw: %f < path_constraint: %f -- Discard Edge", edgeAvailBw, path_constraints->bwConstraint);
		g_free(path_constraints);
        return 0;    
    } 

    gint indexEdge = i; // get the index for the explored edge
    // Update distance, latency and availBw through u to reach v
    gint map_uIndex = get_map_index_by_nodeId (u->node.nodeId, mapNodes);
	struct map_t *u_map = &mapNodes->map[map_uIndex];
    distance_through_u = u_map->distance + v->edges[indexEdge].cost;
    latency_through_u = u_map->latency + v->edges[indexEdge].delay;    
    gdouble availBw_through_u = 0.0;

	// ingress endpoint (u) is the src of the request
    if (strcmp (u->node.nodeId, s->service_endpoints_id[0].device_uuid) == 0) {
        //DEBUG_PC ("AvailBw %f on %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);        
        memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));        
    }
    else {
        // Get the minimum available bandwidth between the src-->u and the new added edge u-->v
        //DEBUG_PC ("Current AvailBw: %f from src to %s", u_map->avaiBandwidth, u->node.nodeId);
        //DEBUG_PC ("AvailBw: %f %s --> %s", edgeAvailBw, u->node.nodeId, v->tVertice.nodeId);
        if (u_map->avaiBandwidth <= edgeAvailBw) {
            memcpy (&availBw_through_u, &u_map->avaiBandwidth, sizeof (gdouble));    
		}
		else {
			memcpy (&availBw_through_u, &edgeAvailBw, sizeof (gdouble));
		} 
    }     
    // Relax the link according to the pathCost and latency
    gint map_vIndex = get_map_index_by_nodeId (v->tVertice.nodeId, mapNodes);
	struct map_t *v_map = &mapNodes->map[map_vIndex];
    // If cost dist (u, v) > dist (src, v) relax the link
    if (distance_through_u > v_map->distance) {
        //DEBUG_PC ("dist(src, u) + dist(u, v): %f > dist (src, v): %f --> Discard Link", distance_through_u, v_map->distance);  
        return 0;
    }
    // If dist (src, u) + dist (u, v) = current dist(src, v), then use the latency as discarding criteria
    if ((distance_through_u == v_map->distance) && (latency_through_u > v_map->latency)) {
        //DEBUG_PC ("dist(src, u) + dist(u,v) = current dist(src, v), but latency (src,u) + latency (u, v) > current latency (src, v)");          
        return 0;
    }	
	// If dist (src, u) + dist (u,v) == current dist(src, v) AND latency (src, u) + latency (u, v) == current latency (src, v), the available bandwidth is the criteria
	if ((distance_through_u ==  v_map->distance) && (latency_through_u == v_map->latency) && (availBw_through_u < v_map->avaiBandwidth)) {
		return 0;
	}    
    DEBUG_PC ("%s --> %s Relaxed", u->node.nodeId, v->tVertice.nodeId);
    DEBUG_PC ("\t AvailBw: %f Mb/s, Cost: %f, Latency: %f ms", availBw_through_u, distance_through_u, latency_through_u);
    
    // Update Q list -- 
    struct nodeItem_t *nodeItem = g_malloc0 (sizeof (struct nodeItem_t));
    if (nodeItem == NULL) {
		DEBUG_PC ("memory allocation failed\n");
		exit (-1);    
    }    
    nodeItem->distance = distance_through_u;
	memcpy(&nodeItem->distance, &distance_through_u, sizeof(gdouble));		     
	memcpy(&nodeItem->latency, &latency_through_u, sizeof(gdouble));
	duplicate_node_id (&v->tVertice, &nodeItem->node);	
	// add node to the Q list
    *Q = g_list_insert_sorted (*Q, nodeItem, sort_by_distance);
    //DEBUG_PC ("%s ADDED to Q (length: %d)", nodeItem->node.nodeId, g_list_length(*Q));    
    
    // Update the mapNodes for the specific reached tv   
    v_map->distance = distance_through_u;
	memcpy(&v_map->distance, &distance_through_u, sizeof(gdouble));
    memcpy (&v_map->avaiBandwidth, &availBw_through_u, sizeof (gdouble));
    memcpy (&v_map->latency, &latency_through_u, sizeof (gdouble));
    // Duplicate the predecessor edge into the mapNodes 
	struct edges_t *e1 = &(v_map->predecessor);
	struct edges_t *e2 = &(v->edges[indexEdge]);
	duplicate_edge (e1, e2);	
	DEBUG_PC ("u->v Edge: %s(%s) --> %s(%s)", e2->aNodeId.nodeId, e2->aEndPointId, e2->zNodeId.nodeId, e2->zEndPointId);
	DEBUG_PC("v-pred aTopology: %s", e2->aTopologyId);
	DEBUG_PC("v-pred zTopology: %s", e2->zTopologyId);

    // Check whether v is dstPEId
	//DEBUG_PC ("Targeted dstPEId: %s", req->dstPEId.nodeId);
	//DEBUG_PC ("nodeId added to the map: %s", v_map->verticeId.nodeId);
	//DEBUG_PC ("Q Length: %d", g_list_length(*Q));
	g_free(path_constraints);
    return 0;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Check the feasability of a path wrt the constraints imposed by the request in terms of latency
 * 
 *  @param s
 *	@param p
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gboolean check_computed_path_feasability (struct service_t *s, struct compRouteOutputItem_t* p) {	
	float epsilon = 0.0000001;
	struct path_constraints_t* pathCons = get_path_constraints(s);
	gboolean ret = TRUE;

	if (pathCons->latency == TRUE) {
		if ((pathCons->latencyConstraint - p->delay > 0.0) || (fabs(pathCons->latencyConstraint - p->delay) < epsilon)) {
			DEBUG_PC("Computed Path (latency: %f) is feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
		}
		else {
			DEBUG_PC("Computed Path (latency: %f) is NOT feasible wrt Connection Demand: %f", p->delay, pathCons->latencyConstraint);
			g_free(pathCons);
			return FALSE;
		}
	}
	// Other constraints...
	
	g_free(pathCons);
	return ret;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Sorting the GList Q items by distance 
 * 
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint sort_by_distance (gconstpointer a, gconstpointer b)
{
	//DEBUG_PC ("sort by distance a and b");	
	g_assert(a != NULL);
	g_assert(b != NULL);
	
	//DEBUG_PC ("sort by distance a and b");	  
	struct nodeItem_t *node1 = (struct nodeItem_t *)a;
	struct nodeItem_t *node2 = (struct nodeItem_t *)b;
	g_assert (node1);
	g_assert (node2);
	 
	//DEBUG_PC ("a->distance %u; b->distance %u", node1->distance, node2->distance);
	//DEBUG_PC("a->latency: %f; b->latency: %f", node1->latency, node2->latency);
	//1st criteria, sorting by lowest distance
	if (node1->distance > node2->distance)
		return 1;
	else if (node1->distance < node2->distance)
		return 0;
	if (node1->distance == node2->distance)
	{
		if (node1->latency > node2->latency)
			return 1;
		else if (node1->latency <= node2->latency)
			return 0;
	}
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Allocate memory for graph
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
struct graph_t * create_graph () {
	struct graph_t * g = g_malloc0 (sizeof (struct graph_t));
	if (g == NULL)
	{
		DEBUG_PC ("Memory Allocation Problem");
		exit (-1);
	}
	return g;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Allocate memory for mapNodes
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
struct map_nodes_t * create_map_node ()	 {
	struct map_nodes_t * mN = g_malloc0 (sizeof (struct map_nodes_t));
	if (mN == NULL)
	{
		DEBUG_PC ("Memory allocation failed");
		exit (-1);
	}
	return mN;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Look up for the service in the servieList bound to a serviceUUID
 * 
 * @params serviceUUID
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////

struct service_t* get_service_for_computed_path(gchar* serviceUUID) {
	for (gint i = 0; i < serviceList->numServiceList; i++) {
		struct service_t* s = &(serviceList->services[i]);
		if (strcmp(s->serviceId.service_uuid, serviceUUID) == 0)
			return s;
	}
	return NULL;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Allocate memory for struct deviceList_t
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct deviceList_t* create_device_list()
{
	struct deviceList_t* dList = g_malloc0(sizeof(struct deviceList_t));
	if (dList == NULL)
	{
		DEBUG_PC("Memory Allocation Failure");
		exit(-1);
	}
	return dList;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Allocate memory for struct linkList_t
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct linkList_t* create_link_list() {
	struct linkList_t* lList = g_malloc0(sizeof(struct linkList_t));
	if (lList == NULL)
	{
		DEBUG_PC("Memory Allocation Failure");
		exit(-1);
	}
	return lList;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Allocate memory for struct serviceList_t
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct serviceList_t* create_service_list() {
	struct serviceList_t* sList = g_malloc0(sizeof(struct serviceList_t));
	if (sList == NULL)
	{
		DEBUG_PC("Memory Allocation Failure");
		exit(-1);
	}
	return sList;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Friendly function to log the service type
 * 
 * @param type
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void print_service_type(guint type) {
	switch (type) {
	case SERVICE_TYPE_UNKNOWN:
			DEBUG_PC("Service Type UNKNOWN");
			break;
		case SERVICE_TYPE_L3NM:
			DEBUG_PC("Service Type L3NM");
			break;
		case SERVICE_TYPE_L2NM:
			DEBUG_PC("Service Type L2NM");
			break;
		case SERVICE_TYPE_TAPI:
			DEBUG_PC("Service Type L2NM");
			break;
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Friendly function to log the port direction
 *
 * @param direction
 *
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void print_link_port_direction(guint direction)
{
	switch (direction) {
		case LINK_PORT_DIRECTION_BIDIRECTIONAL:
			//DEBUG_PC("Bidirectional Port Direction");
			break;
		case LINK_PORT_DIRECTION_INPUT:
			//DEBUG_PC("Input Port Direction");
			break;
		case LINK_PORT_DIRECTION_OUTPUT:
			//DEBUG_PC("Output Port Direction");
			break;
		case LINK_PORT_DIRECTION_UNKNOWN:
			//DEBUG_PC("Unknown Port Direction");
			break;
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Friendly function to log the port termination direction
 *
 * @param direction
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void print_termination_direction(guint direction)
{
	switch (direction) {
	case TERMINATION_DIRECTION_BIDIRECTIONAL:
		//DEBUG_PC("Bidirectional Termination Direction");
		break;
	case TERMINATION_DIRECTION_SINK:
		//DEBUG_PC("Input Termination Direction");
		break;
	case TERMINATION_DIRECTION_SOURCE:
		//DEBUG_PC("Output Termination Direction");
		break;
	case TERMINATION_DIRECTION_UNKNOWN:
		//DEBUG_PC("Unknown Termination Direction");
		break;
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Friendly function to log the termination state
 *
 * @param state 
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void print_termination_state(guint state)
{
	switch (state) {
	case TERMINATION_STATE_CAN_NEVER_TERMINATE:
		//DEBUG_PC("Can never Terminate");
		break;
	case TERMINATION_STATE_NOT_TERMINATED:
		DEBUG_PC("Not terminated");
		break;
	case TERMINATION_STATE_TERMINATED_SERVER_TO_CLIENT_FLOW:
		DEBUG_PC("Terminated server to client flow");
		break;
	case TERMINATION_STATE_TERMINATED_CLIENT_TO_SERVER_FLOW:
		DEBUG_PC("Terminated client to server flow");
		break;
	case TERMINATION_STATE_TERMINATED_BIDIRECTIONAL:
		//DEBUG_PC("Terminated bidirectional");
		break;
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Friendly function to log the capacity unit
 *
 * @param unit
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void print_capacity_unit(guint unit) {

	switch (unit) {
		case CAPACITY_UNIT_TB:
			DEBUG_PC("Unit in TB");
			break;
		case CAPACITY_UNIT_TBPS:
			DEBUG_PC("Unit in TB/s");
			break;
		case CAPACITY_UNIT_GB:
			DEBUG_PC("Unit in GB");
			break;
		case CAPACITY_UNIT_GBPS:
			DEBUG_PC("Unit in GB/s");
			break;
		case CAPACITY_UNIT_MB:
			DEBUG_PC("Unit in MB");
			break;
		case CAPACITY_UNIT_MBPS:
			//DEBUG_PC("Unit in MB/s");
			break;
		case CAPACITY_UNIT_KB:
			DEBUG_PC("Unit in KB");
			break;
		case CAPACITY_UNIT_KBPS:
			DEBUG_PC("Unit in KB/s");
			break;
		case CAPACITY_UNIT_GHZ: 
			DEBUG_PC("Unit in GHz");
			break;
		case CAPACITY_UNIT_MHZ:
			DEBUG_PC("Unit in MHz");
			break;
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Friendly function to log the link forwarding direction
 *
 * @param linkFwDir
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void print_link_forwarding_direction(guint linkFwDir) {
	switch (linkFwDir) {
		case LINK_FORWARDING_DIRECTION_BIDIRECTIONAL:
			DEBUG_PC("BIDIRECTIONAL LINK FORWARDING DIRECTION");
			break;
		case LINK_FORWARDING_DIRECTION_UNIDIRECTIONAL:
			DEBUG_PC("UNIDIRECTIONAL LINK FORWARDING DIRECTION");
			break;
		case  LINK_FORWARDING_DIRECTION_UNKNOWN:
			DEBUG_PC("UNKNOWN LINK FORWARDING DIRECTION");
			break;
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Allocate memory for the contextSet
 *
 * @param 
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct contextSet_t* create_contextSet() {
	struct contextSet_t* c = g_malloc0(sizeof(struct contextSet_t));
	if (c == NULL) {
		DEBUG_PC("Memory Allocation Failure");
		exit(-1);
	}
	return c;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Search a specific contextUuid element into the contextSet
 *
 * @param contextUuid
 * @param set
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct context_t* find_contextId_in_set(gchar* contextUuid, struct contextSet_t* set) {

	g_assert(set);
	//DEBUG_PC("Checking if contextId: %s in in the ContextList??", contextUuid);

	for (gint i = 0; i < set->num_context_set; i++) { 	
		struct context_t* c = &(set->contextList[i]);
		//DEBUG_PC("Context Item [%d] Id: %s", i, c->contextId);
		if (strcmp(contextUuid, c->contextId) == 0) {
			//DEBUG_PC("contextId: %s is FOUND in the ContextSet_List", contextUuid);
			return c;
		}
	}
	//DEBUG_PC("contextId: %s NOT FOUND in the ContextSet_List", contextUuid);
	return NULL;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Add a specific context uuid into the context set
 *
 * @param contextUuid
 * @param set
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct context_t* add_contextId_in_set(gchar *contextUuid, struct contextSet_t *set) {

	set->num_context_set++;
	struct context_t* c = &(set->contextList[set->num_context_set - 1]);
	duplicate_string(c->contextId, contextUuid);
	return c;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Find a vertex in a specific graph
 *
 * @param contextUuid
 * @param set
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* find_vertex_in_graph_context(struct graph_t *g, gchar* deviceId) {

	for (gint i = 0; i < g->numVertices; i++)
	{
		struct vertices_t* v = &(g->vertices[i]);
		if (strcmp(v->verticeId.nodeId, deviceId) == 0) {
			return v;
		}
	}
	return NULL;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Adding a deviceId into a graph
 *
 * @param g
 * @param deviceId
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct vertices_t* add_vertex_in_graph(struct graph_t* g, gchar* deviceId) {
	g->numVertices++;
	struct vertices_t* v = &(g->vertices[g->numVertices - 1]);
	duplicate_string(v->verticeId.nodeId, deviceId);
	return v;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Construct the graphs (vertices and edges) bound to every individual context
 *
 * @param cSet
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_deviceList(struct contextSet_t* cSet) {
	// Check every device their endpoints
	for (gint i = 0; i < deviceList->numDevices; i++) {
		struct device_t* d = &(deviceList->devices[i]);
		//DEBUG_PC("Exploring DeviceId: %s", d->deviceId);

		// Check the associated endPoints
		for (gint j = 0; j < d->numEndPoints; j++) {
			struct endPoint_t* eP = &(d->endPoints[j]);
			// Get endPointId (topology, context, device Id and endpoint uuid)
			struct endPointId_t* ePid = &(eP->endPointId);  //end point id
			//DEBUG_PC("   EndPointId: %s || Type: %s", eP->endPointId.endpoint_uuid, d->deviceType);
			//DEBUG_PC("   TopologyId: %s || ContextId: %s", eP->endPointId.topology_id.topology_uuid, eP->endPointId.topology_id.contextId);

			// Add contextId in ContextSet and the deviceId (+endpoint) into the vertex set
			struct context_t *c = find_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
			if (c == NULL) {
				//DEBUG_PC("   contextUuid: %s MUST BE ADDED to ContextSet", eP->endPointId.topology_id.contextId);
				c = add_contextId_in_set(eP->endPointId.topology_id.contextId, cSet);
			}
			// Check if the deviceId and endPointUuid are already considered in the graph of the context c
			struct vertices_t* v = find_vertex_in_graph_context(&c->g, d->deviceId);
			if (v == NULL) {
				//DEBUG_PC("  deviceId: %s MUST BE ADDED to the Context Graph", d->deviceId);
				v = add_vertex_in_graph(&c->g, d->deviceId);
			}
		}
	}
	//print_contextSet(cSet);
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Determine whether a deviceId is in the targetNode list of a specific vertex v
 *
 * @param v
 * @param deviceId
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct targetNodes_t* find_targeted_vertex_in_graph_context(struct vertices_t* v, gchar *deviceId) {
	for (gint k = 0; k < v->numTargetedVertices; k++) {
		struct targetNodes_t* w = &(v->targetedVertices[k]);
		if (strcmp(w->tVertice.nodeId, deviceId) == 0) {
			return w;
		}
	}
	return NULL;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Add a deviceId a targetNode of a specific vertex v
 *
 * @param v
 * @param deviceId
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct targetNodes_t* add_targeted_vertex_in_graph_context(struct vertices_t* v, gchar* bDeviceId) {
	v->numTargetedVertices++;
	struct targetNodes_t* w = &(v->targetedVertices[v->numTargetedVertices - 1]);
	duplicate_string(w->tVertice.nodeId, bDeviceId);
	return w;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Returns the structure of a device endpoint bound to a specific deviceId and endPointId
 *
 * @param devId
 * @param endPointUuid
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct endPoint_t* find_device_tied_endpoint(gchar* devId, gchar* endPointUuid) {
	//DEBUG_PC("devId: %s ePId: %s", devId, endPointUuid);
	for (gint i = 0; i < deviceList->numDevices; i++) {
		struct device_t* d = &(deviceList->devices[i]);
		if (strcmp(d->deviceId, devId) != 0) {
			continue;
		}
		// Iterate over the endpoints tied to the deviceId
		for (gint j = 0; j < d->numEndPoints; j++) {
			struct endPoint_t* eP = &(d->endPoints[j]);
			//DEBUG_PC("looked endPointId: %s", eP->endPointId.endpoint_uuid);
			if (strcmp(eP->endPointId.endpoint_uuid, endPointUuid) == 0) {
				return eP;
			}
		}
	}
	return NULL;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Adding the edge/linnk in the targetedNodes w list
 *
 * @param w
 * @param l
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void add_edge_in_targetedVertice_set(struct targetNodes_t* w, struct link_t* l) {
	//DEBUG_PC("\t targetedVertex: %s", w->tVertice.nodeId);
	w->numEdges++;
	struct edges_t* e = &(w->edges[w->numEdges - 1]);
	// Copy the link Id UUID
	duplicate_string(e->linkId, l->linkId);

	// copy the deviceId and endpointsIds (A --> Z)
	struct link_endpointId_t* aEndpointId = &(l->linkEndPointId[0]);
	duplicate_string(e->aNodeId.nodeId, aEndpointId->deviceId);
	duplicate_string(e->aEndPointId, aEndpointId->endPointId);
	duplicate_string(e->aTopologyId, aEndpointId->topology_id.topology_uuid);

	struct link_endpointId_t* zEndpointId = &(l->linkEndPointId[1]);
	duplicate_string(e->zNodeId.nodeId, zEndpointId->deviceId);
	duplicate_string(e->zEndPointId, zEndpointId->endPointId);
	duplicate_string(e->zTopologyId, zEndpointId->topology_id.topology_uuid);

	// The potential and available capacity is indeed retrieved using aEndpointId in the deviceList
	struct endPoint_t* eP = find_device_tied_endpoint(aEndpointId->deviceId, aEndpointId->endPointId);
	if (eP == NULL) {
		DEBUG_PC("devId: %s endPointUuid: %s NOT in Device List!!--- Weird", aEndpointId->deviceId, aEndpointId->endPointId);
		exit(-1);
	}
	//Potential(total) and available capacity
	e->unit = eP->potential_capacity.unit;
	memcpy(&e->totalCap, &eP->potential_capacity.value, sizeof(gdouble));
	memcpy(&e->availCap, &eP->available_capacity.value, sizeof(gdouble));

	// Copy interdomain local/remote Ids
	memcpy(e->interDomain_localId, eP->inter_domain_plug_in.inter_domain_plug_in_local_id, 
		strlen(eP->inter_domain_plug_in.inter_domain_plug_in_local_id));
	memcpy(e->interDomain_remoteId, eP->inter_domain_plug_in.inter_domain_plug_in_remote_id,
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
		strlen(eP->inter_domain_plug_in.inter_domain_plug_in_remote_id));

	// cost value
	memcpy(&e->cost, &l->cost_characteristics.cost_value, sizeof(gdouble));

	// latency
	memcpy(&e->delay, &l->latency_characteristics.fixed_latency, sizeof(gdouble));
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Searching a specific edge/link by the linkId(UUID)
 *
 * @param w
 * @param l
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* find_edge_in_targetedVertice_set(struct targetNodes_t* w, struct link_t* l) {
		
	for (gint i = 0; i < w->numEdges; i++) {
		struct edges_t* e = &(w->edges[i]);
		if (strcmp(e->linkId, l->linkId) == 0) {
			return e;
		}
	}
	return NULL;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief supporting the construction of the graph per context using the explicit
 * contents/info of the link list
 *
 * @param set
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet_linklList(struct contextSet_t* set) {
	g_assert(set);
	
	// for each link in linkList:
	// 1st- Retrieve endpoints A --> B feauture (context Id, device Id, endpoint Id)
	// 2st - In the graph associated to the contextId, check wheter A (deviceId) is in the vertices list
	// o No, this is weird ... exist
	// o Yes, get the other link endpoint (i.e., B) and check whether it exists. If NOT add it, considering
	// all the attributes; Otherwise, check whether the link is different from existing edges between A and B

	for (gint j = 0; j < linkList->numLinks; j++) {
		struct link_t* l = &(linkList->links[j]);
		// link assumed to be P2P A --> B; I.e. 2 endPoints; 1st specifies A and 2nd specifie B
		struct link_endpointId_t* aEndpointId = &(l->linkEndPointId[0]);
		struct topology_id_t* topologyId = &(aEndpointId->topology_id);
		// get the contextId
		gchar contextUuid[UUID_CHAR_LENGTH];
		duplicate_string(contextUuid, topologyId->contextId);
		//DEBUG_PC("Link: %s in Context: %s", l->linkId, contextUuid);

		// Check first contextUuid exists in the cSet
		struct context_t* c = find_contextId_in_set(contextUuid, set);
		if (c == NULL) {
			DEBUG_PC("ContextId: %s does NOT exist... weird", contextUuid);
			exit(-1);
		}

		// get the device ID of A
		gchar aDeviceId[UUID_CHAR_LENGTH];
		duplicate_string(aDeviceId, aEndpointId->deviceId);

		struct graph_t* g = &(c->g); // get the graph associated to the context c
		struct vertices_t* v = find_vertex_in_graph_context(g, aDeviceId);
		if (v == NULL) {
			DEBUG_PC("aDeviceId: %s IS NOT IN Vertices of contextId: %s", aDeviceId, contextUuid);
			exit(-1);
		}		
		// get the bEndpointId
		struct link_endpointId_t* bEndpointId = &(l->linkEndPointId[1]);
		gchar bDeviceId[UUID_CHAR_LENGTH];
		duplicate_string(bDeviceId, bEndpointId->deviceId);
		// Check whether device B is in the targeted Vertices from A (i.e., v)?
		// If not, add B in the targeted vertices B + create the edge and add it
		// If B exist, check whether the explored link/edge is already in the list of edges
		struct targetNodes_t* w = find_targeted_vertex_in_graph_context(v, bDeviceId);
		if (w == NULL) {
			//DEBUG_PC("B device [%s] is PEER of A device [%s]", bDeviceId, v->verticeId.nodeId);
			w = add_targeted_vertex_in_graph_context(v, bDeviceId);
			add_edge_in_targetedVertice_set(w, l);
		}
		else {
			// w exists, it is needed to check whether the edge (link) should be added
			struct edges_t* e = find_edge_in_targetedVertice_set(w, l);
			if (e == NULL) {
				// Add the link into the list
				add_edge_in_targetedVertice_set(w, l);
			}
			else {
				DEBUG_PC("The link already exists ...");
				continue;
			}
		}
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Create the set of (distinct) contexts with the deviceList and linkList
 *
 * @param cSet
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void build_contextSet(struct contextSet_t* cSet) {
	g_assert(cSet);
	g_assert(deviceList);
	g_assert(linkList);

	// devices are tied to contexts, i.e. depending on the contextId of the devices
	build_contextSet_deviceList(cSet);

	// Once the diverse contexts are created and the devices/endpoints asigned to the 
	// respective graph tied to each context, it is needed to create the edges
	build_contextSet_linklList(cSet);

	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Print the contents of the ContextIds
 *
 * @param set
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void print_contextSet(struct contextSet_t* set) {
	g_assert(set);

	for (gint i = 0; i < set->num_context_set; i++) {
		struct context_t* c = &(set->contextList[i]);
		DEBUG_PC("-------------------------------------------------------------");
		DEBUG_PC(" Context Id: %s", c->contextId);
		DEBUG_PC("-------------------------------------------------------------");

		struct graph_t* g = &(c->g);
		for (gint j = 0; j < g->numVertices; j++) {
			struct vertices_t* v = &(g->vertices[j]);
			DEBUG_PC("  Head Device Id: %s", v->verticeId.nodeId);
			for (gint k = 0; k < v->numTargetedVertices; k++) {
				struct targetNodes_t* w = &(v->targetedVertices[k]);
				DEBUG_PC("  [%d] --- Peer Device Id: %s", k, w->tVertice.nodeId);
				for (gint l = 0; l < w->numEdges; l++) {
					struct edges_t* e = &(w->edges[l]);
					DEBUG_PC("   \t link Id: %s", e->linkId);
					DEBUG_PC("   \t aEndPointId: %s", e->aEndPointId);
					DEBUG_PC("   \t zEndPointId: %s", e->zEndPointId);
					DEBUG_PC("   \t Available Capacity: %f, Latency: %f, Cost: %f", e->availCap, e->delay, e->cost);
					DEBUG_PC("   \t aTopologyId: %s", e->aTopologyId);
					DEBUG_PC("   \t zTopologyId: %s", e->zTopologyId);
				}
			}
		}
	}
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Check whether src and dst PE nodeId of the req are the same
 *
 *	@param r
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
gint same_src_dst_pe_nodeid(struct service_t* s)
{
	// Check that source PE and dst PE are NOT the same, i.e., different ingress and egress endpoints (iEp, eEp)
	struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[0]);
	struct service_endpoints_id_t* eEp = &(s->service_endpoints_id[1]);

	gchar* iEpUUID = iEp->endpoint_uuid;
	gchar* eEpUUID = eEp->endpoint_uuid;
	gchar* iDevUUID = iEp->device_uuid;
	gchar* eDevUUID = eEp->device_uuid;

	// Compare the device uuids
	if (strcmp(iDevUUID, eDevUUID) != 0) {
		DEBUG_PC("DIFFERENT --- iDevId: %s and eDevId: %s", iDevUUID, eDevUUID);
		return 1;
	}
	// Compare the endpoints (ports)
	if (strcmp(iEpUUID, eEpUUID) != 0) {
		DEBUG_PC("DIFFERENT --- iEpUUID: %s and eEpUUID: %s", iEpUUID, eEpUUID);
		return 1;
	}
	return 0;	
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Handles issues with the route computation
 *
 *	@param route
 *	@param s
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void comp_route_connection_issue_handler (struct compRouteOutput_t *path, struct service_t *s)
{
	g_assert(path);
	g_assert(s);

	// Increase the number of computed routes/paths despite there was an issue to be reported		
	path->numPaths++;	
	// Copy the serviceId
	copy_service_id(&(path->serviceId), &(s->serviceId));

	// copy the service endpoints, in general, there will be 2 (point-to-point network connectivity services)
	for (gint i = 0; i < s->num_service_endpoints_id; i++) {
		struct service_endpoints_id_t* iEp = &(s->service_endpoints_id[i]);
		struct service_endpoints_id_t* oEp = &(path->service_endpoints_id[i]);
		copy_service_endpoint_id(oEp, iEp);
	}
	path->num_service_endpoints_id = s->num_service_endpoints_id;
	path->noPathIssue = NO_PATH_CONS_ISSUE;
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief released the allocated memory fo compRouteOutputList_t
 *
 *	@param ro
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void destroy_compRouteOutputList (struct compRouteOutputList_t *ro)
{
	g_assert (ro);	
	g_free (ro);	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief creates a copy of the underlying graph
 *
 *	@param originalGraph
 *	@param destGraph
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void duplicate_graph (struct graph_t *originalGraph, struct graph_t *destGraph)	{
	g_assert (originalGraph);
	g_assert (destGraph);
	
	destGraph->numVertices = originalGraph->numVertices;
	for (gint i = 0; i < originalGraph->numVertices; i++) {
		struct vertices_t *oVertex = &(originalGraph->vertices[i]);
		struct vertices_t *dVertex = &(destGraph->vertices[i]);
		dVertex->numTargetedVertices = oVertex->numTargetedVertices;		
		duplicate_node_id (&oVertex->verticeId, &dVertex->verticeId);
		
		for (gint j = 0; j < oVertex->numTargetedVertices; j++)	{
			struct targetNodes_t *oTargetedVertex = &(oVertex->targetedVertices[j]);
			struct targetNodes_t *dTargetedVertex = &(dVertex->targetedVertices[j]);
			duplicate_node_id (&oTargetedVertex->tVertice, &dTargetedVertex->tVertice);
			dTargetedVertex->numEdges = oTargetedVertex->numEdges;
			
			for (gint k = 0; k < oTargetedVertex->numEdges; k++) {
				struct edges_t *oEdge = &(oTargetedVertex->edges[k]);
				struct edges_t *dEdge = &(dTargetedVertex->edges[k]);
				duplicate_edge (dEdge, oEdge);						
			}
		}	
	}	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Function used to retrieve from the graph the edge instance associated to the
 * pathLink (pL)
 *
 *	@param pL
 *	@parma g
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* get_edge_from_graph_by_linkId(struct pathLink_t* pL, struct graph_t* g) {
	g_assert(pL);
	g_assert(g);

	for (gint i = 0; i < g->numVertices; i++) {
		struct vertices_t* v = &(g->vertices[i]);
		for (gint j = 0; j < v->numTargetedVertices; j++) {
			struct targetNodes_t* tv = &(v->targetedVertices[j]);
			for (gint k = 0; k < tv->numEdges; k++) {
				struct edges_t* e = &(tv->edges[k]);
				if (strcmp(e->linkId, pL->linkId) == 0) {
					return e;
				}
			}		
		}
	}
	return NULL;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Function used to retrieve from the graph the reverse edge (rev_e) associated to an edge (e)
 *
 *	@param e
 *	@parma g
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
 /////////////////////////////////////////////////////////////////////////////////////////
struct edges_t* get_reverse_edge_from_the_graph(struct edges_t* e, struct graph_t* g) {
	g_assert(e);
	g_assert(g);

	for (gint i = 0; i < g->numVertices; i++) {
		struct vertices_t* v = &(g->vertices[i]);
		// Check Route Element zNodeId with the v->verticeId
		if (compare_node_id(&e->zNodeId, &v->verticeId) != 0)
			continue;
		// Check Route Element zNodeis with any of reachable targeted vertices from v
		gboolean foundTargVert = FALSE;
		gint indexTargVert = -1;
		for (gint j = 0; j < v->numTargetedVertices; j++) {
			struct targetNodes_t* tv = &(v->targetedVertices[j]);
			if (compare_node_id(&e->aNodeId, &tv->tVertice) == 0)
			{
				foundTargVert = TRUE;
				indexTargVert = j;
				break;
			}
		}
		if (foundTargVert == FALSE) {
			 continue;
		}			

		// The targeted vertice is found, then check matching with the endpoints
		struct targetNodes_t* tv = &(v->targetedVertices[indexTargVert]);
		for (gint k = 0; k < tv->numEdges; k++) {
			struct edges_t* rev_e = &(tv->edges[k]);
			if ((strcmp(rev_e->aEndPointId, e->zEndPointId) == 0) &&
				(strcmp(rev_e->zEndPointId, e->aEndPointId) == 0)) {
				return rev_e;
			}				
		}
	}
	return NULL;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Function used to reflect in the graph the assigned/allocated resources contained in the path p
 * 	considering the needs (e.g., bandwidth) of service s
 *
 *	@param p
 *	@param s
 *	@parma g
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2022
 */
/////////////////////////////////////////////////////////////////////////////////////////
void allocate_graph_resources (struct path_t *p, struct service_t *s, struct graph_t *g)
{
	g_assert (p);
	g_assert (s);
	g_assert (g);
	// Retrieve the requested bw by the service
	struct path_constraints_t* pathCons = get_path_constraints(s);

	for (gint i = 0; i < p->numPathLinks; i++) {
		struct pathLink_t* pL = &(p->pathLinks[i]);
		// get the edge associated to the linkId in the graph
		struct edges_t* e = get_edge_from_graph_by_linkId(pL, g);
		if (e == NULL) {
			DEBUG_PC("The linkId: %s is NOT found in the Graph!!!", pL->linkId);
			exit(-1);
		}
		//Update the availBw in the edge
		gdouble resBw = e->availCap - pathCons->bwConstraint;
		DEBUG_PC("Updating the Avail Bw @ edge/link: %s", e->linkId);
		DEBUG_PC("Initial avaiCap @ e/link: %f, demanded Bw: %f, resulting Avail Bw: %f", e->availCap, pathCons->bwConstraint, resBw);
		memcpy(&e->availCap, &resBw, sizeof(gdouble));
		DEBUG_PC("Final e/link avail Bw: %f", e->availCap);	
	}
	g_free(pathCons);
	
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Function used to reflect in the graph the assigned/allocated resources contained in the reverse direction of the path p
 * 	considering the needs (e.g., bandwidth) of service s
 *
 *	@param p
 *	@param s
 *	@parma g
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2021
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void allocate_graph_reverse_resources(struct path_t* p, struct service_t * s, struct graph_t* g)
{
	g_assert(p);
	g_assert(s);
	g_assert(g);

	struct path_constraints_t* pathCons = get_path_constraints(s);
	for (gint i = 0; i < p->numPathLinks; i++) {
		struct pathLink_t* pL = &(p->pathLinks[i]);
		struct edges_t* e = get_edge_from_graph_by_linkId(pL, g);
		if (e == NULL) {
			DEBUG_PC("The linkId: %s is NOT found in the Graph!!!", pL->linkId);
			exit(-1);
		}
		struct edges_t* rev_e = get_reverse_edge_from_the_graph(e, g);
		if (rev_e == NULL) {
			DEBUG_PC("the reverse edge of linkId: %s is NOT found in the Graph!!!", pL->linkId);
			exit(-1);
		}
		//Update the availBw in the edge
		gdouble resBw = rev_e->availCap - pathCons->bwConstraint;
		DEBUG_PC("Updating the Avail Bw @ reverse edge/link: %s", rev_e->linkId);
		DEBUG_PC("Initial avaiCap @ reverse edge e/link: %f, demanded Bw: %f, resulting Avail Bw: %f", rev_e->availCap, pathCons->bwConstraint, resBw);
		memcpy(&rev_e->availCap, &resBw, sizeof(gdouble));
		DEBUG_PC("Final reverse edge e/link avail Bw: %f", rev_e->availCap);
	}
	g_free(pathCons);
	return;
}

////////////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief Function used to printall the computed paths for the requested network connectivity services
 *
 *	@param routeList
 *
 * 	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2021
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void print_path_connection_list(struct compRouteOutputList_t* routeList) {
	g_assert(routeList);
	for (gint i = 0; i < routeList->numCompRouteConnList; i++) {
		DEBUG_PC("==================== Service Item: %d ===================", i);
		struct compRouteOutput_t* rO = &(routeList->compRouteConnection[i]);
		DEBUG_PC("num service endpoints: %d", rO->num_service_endpoints_id);
		struct serviceId_t* s = &(rO->serviceId);
		DEBUG_PC("ContextId: %s, ServiceId: %s", s->contextId, s->service_uuid);
		DEBUG_PC("ingress --- %s [%s]", rO->service_endpoints_id[0].device_uuid, 
			rO->service_endpoints_id[0].endpoint_uuid);
		DEBUG_PC("egress --- %s [%s]", rO->service_endpoints_id[1].device_uuid,
			rO->service_endpoints_id[1].endpoint_uuid);

		if (rO->noPathIssue == NO_PATH_CONS_ISSUE) {
			DEBUG_PC("NO PATH SUCCESSFULLY COMPUTED");
			continue;
		}
		// Path
		DEBUG_PC("Number of paths: %d", rO->numPaths);
		for (gint j = 0; j < rO->numPaths; j++) {
			struct path_t* p = &(rO->paths[j]);
			print_path_t(p);
		}
	}
	return;
}

///////////////////////////////////////////////////////////////////////////////////
/**
 * 	@file pathComp_tools.c
 * 	@brief update statistics for the path computation operations
 *
 *  @param routeConnList
 *	@param d
 *
 *	@author Ricardo Martínez <ricardo.martinez@cttc.es>
 *	@date 2021
 */
 /////////////////////////////////////////////////////////////////////////////////////////
void update_stats_path_comp(struct compRouteOutputList_t* routeConnList, struct timeval d, gint numSuccesPathComp, gint numPathCompIntents) {
	g_assert(routeConnList);

	total_path_comp_time.tv_sec = total_path_comp_time.tv_sec + d.tv_sec;
	total_path_comp_time.tv_usec = total_path_comp_time.tv_usec + d.tv_usec;
	total_path_comp_time = tv_adjust(total_path_comp_time);

	gdouble path_comp_time_msec = (((total_path_comp_time.tv_sec) * 1000) + ((total_path_comp_time.tv_usec) / 1000));
	gdouble av_alg_comp_time = ((path_comp_time_msec / numSuccesPathComp));
	DEBUG_PC("\t --- STATS PATH COMP ----");
	DEBUG_PC("Succesfully Comp: %d | Path Comp Requests: %d", numSuccesPathComp, numPathCompIntents);
	DEBUG_PC("AV. PATH COMP ALG. TIME: %f ms", av_alg_comp_time);

	for (gint i = 0; i < serviceList->numServiceList; i++) {
		struct service_t* s = &(serviceList->services[i]);
		char* eptr;
		for (gint j = 0; j < s->num_service_constraints; j++) {
			struct constraint_t* constraints = &(s->constraints[j]);
			if (strncmp((const char*)(constraints->constraint_type), "bandwidth", 9) == 0) {
				totalReqBw += (gdouble)(strtod((char*)constraints->constraint_value, &eptr));
			}
		}
	}
	for (gint k = 0; k < routeConnList->numCompRouteConnList; k++) {
		struct compRouteOutput_t* rO = &(routeConnList->compRouteConnection[k]);
		if (rO->noPathIssue == NO_PATH_CONS_ISSUE) {
			continue;
		}
		// Get the requested service bw bound to that computed path
		struct path_t* p = &(rO->paths[0]);
		struct service_t* s = get_service_for_computed_path(rO->serviceId.service_uuid);
		if (s == NULL) {
			DEBUG_PC("Weird the service associated to a path is not found");
			exit(-1);
		}
		for (gint l = 0; l < s->num_service_constraints; l++) {
			struct constraint_t* constraints = &(s->constraints[l]);
			char* eptr;
			if (strncmp((const char*)(constraints->constraint_type), "bandwidth", 9) == 0) {
				totalServedBw += (gdouble)(strtod((char*)constraints->constraint_value, &eptr));
			}
		}
	}
	gdouble avServedRatio = totalServedBw / totalReqBw;
	DEBUG_PC("AV. Served Ratio: %f", avServedRatio);
	gdouble avBlockedBwRatio = (gdouble)(1.0 - avServedRatio);
	DEBUG_PC("AV. BBE: %f", avBlockedBwRatio);
	return;

}