Newer
Older
# Copyright 2022-2024 ETSI OSG/SDG TeraFlowSDN (TFS) (https://tfs.etsi.org/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# read Kafka stream from Kafka topic
# import ast
# import time
# import threading
from prometheus_client import Gauge
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from common.proto.kpi_sample_types_pb2 import KpiSampleType
from common.proto.kpi_value_api_pb2 import KpiValue
from common.proto.kpi_manager_pb2 import KpiDescriptor
LOGGER = logging.getLogger(__name__)
PROM_METRICS = {}
class MetricWriterToPrometheus:
'''
This class exposes the *cooked KPI* on the endpoint to be scraped by the Prometheus server.
cooked KPI value = KpiDescriptor (gRPC message) + KpiValue (gRPC message)
'''
def __init__(self):
pass
def merge_kpi_descriptor_and_kpi_value(self, kpi_descriptor, kpi_value):
# Creating a dictionary from the kpi_descriptor's attributes
cooked_kpi = {
'kpi_id' : kpi_descriptor.kpi_id.kpi_id.uuid,
'kpi_description': kpi_descriptor.kpi_description,
'kpi_sample_type': KpiSampleType.Name(kpi_descriptor.kpi_sample_type),
'device_id' : kpi_descriptor.device_id.device_uuid.uuid,
'endpoint_id' : kpi_descriptor.endpoint_id.endpoint_uuid.uuid,
'service_id' : kpi_descriptor.service_id.service_uuid.uuid,
'slice_id' : kpi_descriptor.slice_id.slice_uuid.uuid,
'connection_id' : kpi_descriptor.connection_id.connection_uuid.uuid,
'link_id' : kpi_descriptor.link_id.link_uuid.uuid,
'time_stamp' : kpi_value.timestamp.timestamp,
'kpi_value' : kpi_value.kpi_value_type.floatVal
}
# LOGGER.debug("Cooked Kpi: {:}".format(cooked_kpi))
return cooked_kpi
def create_and_expose_cooked_kpi(self, kpi_descriptor: KpiDescriptor, kpi_value: KpiValue):
# merge both gRPC messages into single varible.
cooked_kpi = self.merge_kpi_descriptor_and_kpi_value(kpi_descriptor, kpi_value)
tags_to_exclude = {'kpi_description', 'kpi_sample_type', 'kpi_value'}
metric_tags = [tag for tag in cooked_kpi.keys() if tag not in tags_to_exclude] # These values will be used as metric tags
metric_name = cooked_kpi['kpi_sample_type']
try:
if metric_name not in PROM_METRICS: # Only register the metric, when it doesn't exists
PROM_METRICS[metric_name] = Gauge (
metric_name,
cooked_kpi['kpi_description'],
)
LOGGER.debug("Metric is created with labels: {:}".format(metric_tags))
PROM_METRICS[metric_name].labels(
kpi_id = cooked_kpi['kpi_id'],
device_id = cooked_kpi['device_id'],
endpoint_id = cooked_kpi['endpoint_id'],
service_id = cooked_kpi['service_id'],
slice_id = cooked_kpi['slice_id'],
connection_id = cooked_kpi['connection_id'],
link_id = cooked_kpi['link_id'],
time_stamp = cooked_kpi['time_stamp'],
).set(float(cooked_kpi['kpi_value']))
LOGGER.debug("Metric pushed to the endpoints: {:}".format(PROM_METRICS[metric_name]))
except ValueError as e:
if 'Duplicated timeseries' in str(e):
LOGGER.debug("Metric {:} is already registered. Skipping.".format(metric_name))
print("Metric {:} is already registered. Skipping.".format(metric_name))
else:
LOGGER.error("Error while pushing metric: {}".format(e))