The example presented in Figure 13 depicts a water meter (ex:Meter4837QW123). It can be described by a set of static properties either reused from SAREF (e.g., saref:hasModel) or from SAREF4WATR (e.g., s4watr:hasFirmwareVersion). The spatial extent of the meter is described by its geometry (ex:MeterGeom) that is represented as a point in space following its WKT representation. SAREF4WATR defines different measurable properties of a water meter, among them the battery remaining time (s4watr:BatteryRemainingTime) that is the one used in the example. Measurements of the meter for this property can be represented (ex:WMMeasurement200206) using for example the time instant of the measurement, its value and the unit of measure.
The main function of water meters is to measure water flow. Figure 14 presents two examples of water flow measurements (ex:WFMeasurement170206 and ex:WFMeasurement643234) for two different water flow properties (s4watr:FlowVolume and s4watr:ExternalTemperature, respectively). Notice how the flow volume measurement is described with a time instant while the external temperature one is described with a time interval (ex:PT838452).
Different tariffs can be applied to water meters. Figure 15 presents an example of a consumption-based tariff (ex:Meter4837QW123Tariff) for a water meter (ex:Meter4837QW123). Different individuals are defined for describing the duration (ex:FiveYears), period (ex:OneYear) and billing period (ex:OneMonth) of the tariff. SAREF4WATR does not restrict how to define particular conditions of a tariff; in the example, for the consumption description a string literal is used.
The measurement of the different properties of the water itself is also of interest. Figure 16 presents two measurements (ex:DTSMeasurement106 and ex:DTSMeasurement107) of one chemical property (s4watr:Cadmium) and of one bacterial property (s4watr:EscherichiaColi), along with their timestamps, values and units. Even if SAREF4WATR includes a set of predefined water properties, other properties could be defined by instantiating the corresponding s4watr:WaterProperty subclass.
Figure 17 depicts a water infrastructure (ex:DowntownDS) that represents a distribution system for drinking water (s4watr:DrinkingWater) intended for domestic use (s4watr:Domestic). The spatial extent of the infrastructure is described by its geometry (ex:DSGeom) that is represented as a polygon in space following its WKT representation. The water distribution system has different subsystems: a water meter (ex:Meter4837QW123), a tank (ex:Tank38472) and a pump (ex:PumpRT73467). These subsystems can be represented through their geometries, as points in the example (ex:MeterGeom, ex:TankGeom, ex:PumpGeom), and different measures could be made of them such as the one depicted (ex:PMeasurement854306) that measures the flow rate (s4watr:FlowRate) of the pump.
Figure 18 contains an example of a key performance indicator (ex:MinimumPressureLevel) defined for a water distribution system (ex:DowntownDS). The key performance indicator is defined with its name and calculation period (ex:OneWeek). Besides, an assessment is made for the KPI (ex:MPL2020020723), derived from existing measurements (ex:PLMeasurement56206, ex:PLMeasurement56207 and ex:PLMeasurement56208), indicating the value of the assessment and its temporal properties.