
© ETSI CC-BY-4.0

Interactive Session 2
Panagiotis Famelis, Georgios P. Katsikas

ETSI TFS – Hackfest #3, October 17, 2023

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Quick P4 tutorial
cd ~/controller/src/tests/hackfest3/p4

2

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

P4 program structure

3

A P4 program comprises of the following blocks:

Header Definitions

Defining the protocol headers

Parser

A state machine that dictates how to parse a packet

Control Blocks

Comprising of Match-Action Tables

Deparser

Defining how the packet will be encoded in the wire

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Header definition and Parser

4

header Ethernet_h {

bit<48> dstAddr;

bit<48> srcAddr;

bit<16> etherType;

}

parser MyParser (packet_in pkt, out accepted_packet hdr) {

state start {

pkt.extract(hdr.ethernet);

transition select (pkt.ethernet.etherType) {

0x800: parse_ipv4;

}

}

state parse_ipv4 {

pkt.extract(hdr.ip);

transition accept;

}

}

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Control Block

5

table l2_exact_table {

key = {

hdr.ethernet.dst_addr: exact;

 }

actions = {

set_egress_port;

drop;

}

const default_action = drop;

}

action drop () {

mark_to_drop(standard_metadata);

}

action set_egress_port(port_num_t port_num) {

standard_metadata.egress_spec = port_num;

}

The main part of the program are the
user-defined tables, comprising of:

A set of keys

A set of actions

The controller instructions are
basically table entries consisting of:

A key

A corresponding action

Parameters for the action

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

V1 model

6

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Our P4 program

7

Let’s take a look at our P4 program!

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Toy case for P4 telemetry

8

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Inband Network Telemetry (INT)

The basic idea is to embed some metadata to the
packets that traverse the switch

More details will be shared in a later presentation by
Georgios Katsikas

But let’s try and see in practice how such a thing
could be implemented

9

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

IPv4 options

IPv4 headers have an optional part called Options
which follows the standard IPv4 header and can be of
variable length (0-40 bytes)

IPv4 Options are (rarely) used to record routes,
timestamps, security mechanisms, etc.

We are going to use that part to embed some
information from the switches

10

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

P4 Standard Metadata

Many different things are collected by a P4 switch,
including:

ingress_port : implementation specific

packet_length : implementation specific

egress_port : implementation specific

ingress_global_timestamp : 48 bits

egress_global_timestamp : 48 bits

mcast_grp : 16 bits

enq_timestamp : 48 bits

enq_qdepth : 19 bits

deq_timedelta : 32 bits

deq_qdepth : 19 bits

11

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Implementation

12

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Sender/Receiver

First, we need a way to correctly decode our packets
and extract the int information

For that reason, we are providing two python scripts

The scripts are taken from the Networked Systems
Group (NSG) in ETH Zurich

https://github.com/nsg-ethz/p4-learning/tree/master

13

Some extra steps are
needed to run those in
a Mininet container!

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

P4 program

The P4 program used encodes in each packet the
following information:

The switch ID

The queue depth when the packet dequeued

The output port

As it stands now, the switch ID is always the default 1

Let’s run the experiment

14

It is best to redeploy
TFS using SKIP_BUILD!

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Exercise 1

Change the P4 program to receive a custom number as
switch id from the controller

Change the Service Handler to automatically install a
rule with the correct switch id

15

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Exercise 2

Change the P4 program and the send/receive scripts to
write the timestamp of when a packet arrived on the
switch

ingress_global_timestamp is 48 bits, but options

currently is 32 bits (maximum 40 bits)!

For now, let’s remove all the other information to
accommodate timestamp

16

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Extensions to try on your own

Create a KPIs in Monitoring from the INT timestamp

Combine with the scripts we created in Session 1

Use (or define) a new protocol, besides IPv4 Options, for INT.
That will allow us more flexibility (like more than 40 bits)

INT specification: https://p4.org/p4-spec/docs/INT_v2_1.pdf

And more details following by Georgios Katsikas

Do not hesitate to contact in slack or mail

pfamelis@ubitech.eu

17

https://creativecommons.org/licenses/by/4.0/
https://p4.org/p4-spec/docs/INT_v2_1.pdf
mailto:pfamelis@ubitech.eu

Thank you!
TFSsupport@etsi.org

18

mailto:TFSsupport@etsi.org

	Default Section
	Slide 1: Interactive Session 2
	Slide 2: Quick P4 tutorial
	Slide 3: P4 program structure
	Slide 4: Header definition and Parser
	Slide 5: Control Block
	Slide 6: V1 model
	Slide 7: Our P4 program
	Slide 8: Toy case for P4 telemetry
	Slide 9: Inband Network Telemetry (INT)
	Slide 10: IPv4 options
	Slide 11: P4 Standard Metadata
	Slide 12: Implementation
	Slide 13: Sender/Receiver
	Slide 14: P4 program
	Slide 15: Exercise 1
	Slide 16: Exercise 2
	Slide 17: Extensions to try on your own
	Slide 18

