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TeraFlowSDN protobuf files
cd ~/controller/proto
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Protobuf files 
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Protobuf files define the way the components 
communicate between themselves and outside

If we need to build a script or program to communicate 
directly with TFS’ components, protobufs are our guide!

Let’s take a look at them
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Writing monitoring probes
cd ~/controller/proto
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Latency probe in Python
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The probe we used in the demo was written in Rust by 
Carlos Natalino (Chalmers University)

The point of this session is to rewrite it in python, using:

 Compiled protobufs (src/common/proto)

Component Clients (src/<component>/client)

But first let’s study the existing probe
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How the probe works

The probe has two parts:

A pinger: periodically sends pings to calculate the 
latency, which is then forwarded to the agent

An agent: Listens for Context events and registers KPIs 
for each service.

Also creates KPI values from latency values
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Mininet container
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Mininet container

8

client

sw2

serversw4sw1

sw3

VM

Docker 
container Mininet hosts 

and switches 
are just 
processes in 
different 
network 
namespaces

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Mininet container
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Communication through sockets

The communication between them is done through 
unix sockets, with a shared file in the docker container

By moving the file to a mounted volume, we can have 
the agent running in the VM
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Program’s structure

agent.rs

Thread A: Listens to Context for service events and registers a 
corresponding KPI

Thread B: Waits for values from ping.rs and creates KPI values 
from them

ping.rs

Runs a periodic ping and sends the collected value to the agent
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Objective 1: Create a new 
monitoring probe in python
cd ~/controller/proto
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Step 1 (ping)

First, let’s try to write the ping script in python
(Use python 2 syntax!)

To begin, we can just ping 8.8.8.8 and print the value

Then we will implement the socket communication 
(exercise 3) and ping the correct IP (exercise 4)
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Step 2a (agent)

Try and implement the first Thread (A) that listens to 
Context events for service creation

Hint: Check context protobuf to see what method to use

How are events differentiated?

Hint: Check context proto to see what kind of events we may have

What should happen for each case?
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Step 3 (agent)

When we get an event for service creation, we should 
create a KPI to Monitoring

We should find the appropriate method and create the 
appropriate object

Hint: check monitoring protobuf!
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Step 4 (agent and ping)

Now it’s time to implement the second Thread (B) that 
listens for values and sends them to monitoring

First implement the socket part in both agent and ping to 
make sure that you can get a value on the agent

Then implement sending the KPI value to Monitoring

Hint: protobuf files!
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Objective 2: Measure packet 
loss, report to TFS, and create 
policy
cd ~/controller/proto
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Loss Ratio probe
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Now that we have created our Latency probe in Python, 
we can easily change it to measure other things

For this exercise we are going to try and measure both 
Latency and Packet Loss

Then we are going to change the Policy to use Packet 
Loss instead of Latency
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Loss Ratio probe
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To measure the Loss Ratio we can create a moving 
ratio, based on whether the ping failed or not

Change the ping program to implement the above idea
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New Policy
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To create a new Policy, we should first get the correct 
KPI_id from Monitoring

Then, change the Policy message accordingly

To insert Packet Loss we can again use:

tc qdisc add dev <switch-iface> root netem loss <x>%
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Thank you!
TFSsupport@etsi.org
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