
© ETSI CC-BY-4.0

Interactive Session #1
Panagiotis Famelis, Georgios P. Katsikas

ETSI TFS – Hackfest #3, October 17, 2023

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

TeraFlowSDN protobuf files
cd ~/controller/proto

2

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Protobuf files 

3

Protobuf files define the way the components 
communicate between themselves and outside

If we need to build a script or program to communicate 
directly with TFS’ components, protobufs are our guide!

Let’s take a look at them

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Writing monitoring probes
cd ~/controller/proto

4

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Latency probe in Python

5

The probe we used in the demo was written in Rust by 
Carlos Natalino (Chalmers University)

The point of this session is to rewrite it in python, using:

 Compiled protobufs (src/common/proto)

Component Clients (src/<component>/client)

But first let’s study the existing probe

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

How the probe works

The probe has two parts:

A pinger: periodically sends pings to calculate the 
latency, which is then forwarded to the agent

An agent: Listens for Context events and registers KPIs 
for each service.

Also creates KPI values from latency values

6

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Mininet container

7

client

sw2

serversw4sw1

sw3

VM

Docker 
container

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Mininet container

8

client

sw2

serversw4sw1

sw3

VM

Docker 
container Mininet hosts 

and switches 
are just 
processes in 
different 
network 
namespaces

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Mininet container

9

client

sw2

serversw4sw1

sw3

VM

Docker 
container

Ping runs 
here

Agent runs 
here

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Communication through sockets

The communication between them is done through 
unix sockets, with a shared file in the docker container

By moving the file to a mounted volume, we can have 
the agent running in the VM

10

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Program’s structure

agent.rs

Thread A: Listens to Context for service events and registers a 
corresponding KPI

Thread B: Waits for values from ping.rs and creates KPI values 
from them

ping.rs

Runs a periodic ping and sends the collected value to the agent

11

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Objective 1: Create a new 
monitoring probe in python
cd ~/controller/proto

12

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Step 1 (ping)

First, let’s try to write the ping script in python
(Use python 2 syntax!)

To begin, we can just ping 8.8.8.8 and print the value

Then we will implement the socket communication 
(exercise 3) and ping the correct IP (exercise 4)

13

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Step 2a (agent)

Try and implement the first Thread (A) that listens to 
Context events for service creation

Hint: Check context protobuf to see what method to use

How are events differentiated?

Hint: Check context proto to see what kind of events we may have

What should happen for each case?

14

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Step 3 (agent)

When we get an event for service creation, we should 
create a KPI to Monitoring

We should find the appropriate method and create the 
appropriate object

Hint: check monitoring protobuf!

15

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Step 4 (agent and ping)

Now it’s time to implement the second Thread (B) that 
listens for values and sends them to monitoring

First implement the socket part in both agent and ping to 
make sure that you can get a value on the agent

Then implement sending the KPI value to Monitoring

Hint: protobuf files!

16

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Objective 2: Measure packet 
loss, report to TFS, and create 
policy
cd ~/controller/proto

17

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Loss Ratio probe

18

Now that we have created our Latency probe in Python, 
we can easily change it to measure other things

For this exercise we are going to try and measure both 
Latency and Packet Loss

Then we are going to change the Policy to use Packet 
Loss instead of Latency

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

Loss Ratio probe

19

To measure the Loss Ratio we can create a moving 
ratio, based on whether the ping failed or not

Change the ping program to implement the above idea

https://creativecommons.org/licenses/by/4.0/


© ETSI CC-BY-4.0

New Policy

20

To create a new Policy, we should first get the correct 
KPI_id from Monitoring

Then, change the Policy message accordingly

To insert Packet Loss we can again use:

tc qdisc add dev <switch-iface> root netem loss <x>%

https://creativecommons.org/licenses/by/4.0/


Thank you!
TFSsupport@etsi.org

21

mailto:TFSsupport@etsi.org

	Default Section
	Slide 1: Interactive Session #1
	Slide 2: TeraFlowSDN protobuf files
	Slide 3: Protobuf files 
	Slide 4: Writing monitoring probes
	Slide 5: Latency probe in Python
	Slide 6: How the probe works
	Slide 7: Mininet container
	Slide 8: Mininet container
	Slide 9: Mininet container
	Slide 10: Communication through sockets
	Slide 11: Program’s structure
	Slide 12: Objective 1: Create a new monitoring probe in python
	Slide 13: Step 1 (ping)
	Slide 14: Step 2a (agent)
	Slide 15: Step 3 (agent)
	Slide 16: Step 4 (agent and ping)
	Slide 17: Objective 2: Measure packet loss, report to TFS, and create policy
	Slide 18: Loss Ratio probe
	Slide 19: Loss Ratio probe
	Slide 20: New Policy
	Slide 21


