
© ETSI CC-BY-4.0© ETSI CC-BY-4.0

Hackfest #2:
Integrating TeraFlowSDN
with ContainerLab

Ricard Vilalta (CTTC)

Lluís Gifre (CTTC)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Hackfest Materials

For a perfect hands-on experience, a VirtualBox VM image is needed. Please download the hackfest VM from the link
below and make sure the VM is installed and loads/starts up on your PC before the Hackfest:

◉ https://www.dropbox.com/s/662xlovamanzkx1/TFS-HF2.1-VM.rar?dl=0 (~9GB)

◉ Download and unzip the RAR file.

◉ VM user/pass: tfs/tfs123

◉ VM Networking:

◉ Network adapter: Attached to NAT

◉ VM IP address: 10.0.2.10/24 / Gateway: 10.0.2.1 / DNS: 8.8.8.8, 8.8.4.4

2

https://creativecommons.org/licenses/by/4.0/
https://www.dropbox.com/s/662xlovamanzkx1/TFS-HF2.1-VM.rar?dl=0

© ETSI CC-BY-4.0

Hackfest Materials

◉ Inside the VM, you have all commands used in files:

◉ /home/tfs/tfs-ctl/hackfest/commands.txt

◉ /home/tfs/tfs-ctl/hackfest/containerlab/commands.txt

◉ Also available at:

◉ https://labs.etsi.org/rep/tfs/controller/-/blob/feat/hackfest-r2.1/hackfest/commands.txt

◉ https://labs.etsi.org/rep/tfs/controller/-/blob/feat/hackfest-r2.1/hackfest/containerlab/commands.txt

◉ Please update latest version from ETSI GitLab repository:

◉ git checkout feat/hackfest-r2.1

◉ git pull

◉ Use proper environment:

◉ pyenv activate 3.9.16/envs/tfs

3

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/tfs/controller/-/blob/feat/hackfest-r2.1/hackfest/commands.txt
https://labs.etsi.org/rep/tfs/controller/-/blob/feat/hackfest-r2.1/hackfest/containerlab/commands.txt

© ETSI CC-BY-4.0

Agenda

4

Tuesday 20 June 2023

9:00 9:10 Welcome & Logistics (ETSI)

9:10 9:40 TeraFlowSDN 101 (TFS Chair)

9:40 10:00 Deploy and Basic use of TeraFlowSDN (TFS TSC Chair)

10:00 10:30 Introduction to ContainerLab (TFS TSC Chair)

10:30 11:00 Introduction to gNMI and OpenConfig (TFS TSC Chair)

11:00 11:30 Coffee break

11:30 11:55 Presentation of the challenges (TFS TSC Chair)

11:55 12:00 Group Picture

12:00 12:15 Form the teams

12:15 13:30 Team-Hacking Starts!

13:30 14:30 Lunch

14:30 16:30 Team-Hacking!

16:30 17:00 Coffee break

17:00 18:15 Team-Hacking!

18:15 18:30 Wrap-up day 1 (TFS TSC Chair)

Wednesday 21 June 2023

9:00 9:10 Welcome Day 2 (ETSI)

9:10 9:20 Brief discussion and progress checkpoint (TFS TSC Chair)

9:20 11:00 Team-Hacking!

11:00 11:30 Coffee break

11:30 13:30 Team-Hacking!

13:30 14:30 Lunch

14:30 16:30 Team-Hacking!

16:30 17:00 Coffee break

17:00 18:00 Final presentations: Teams will present their achievements
- 7-10 teams x 5-10 min per team
- Report: Progress, Working Experiment, Results, etc.
- Feedback: Road blocks, Missing documentation, Report bugs, etc.

18:00 18:15 Deliberation & Winner announcement (TFS TSC Chair)

18:15 18:30 Wrap-up day 2 & end of Hackfest

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

Motivation

5

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Why is SDN different from traditional Architectures?

6

OSS/BSS

System

NMS/

EMS

NENENE

Traditional
Architecture

SDN

Controller

Apps/

Orch

NENENE

SDN
Architecture

The difference is NOT:

➢ Standardized Management Interfaces

➢ Standardized Architecture

➢ Partly not the Open Interfaces

➢ Partly not even the use cases

The difference is:

A new way of thinking

➢ Application focused

➢ Application takes control over the service

➢ Open Source based development

➢ Simplification through Abstraction & Virtualization

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Why do we need SDN in Transport?

7

Programmability:

➢ Programmable interfaces

➢ Applications focused architecture

➢ Abstraction & Virtualization

➢ Multi-Tenant capabilities

Integration focused:

➢ Multi-layer

➢ Multi-vendor

Innovation:

➢ Opens doors for new service models

➢ Service differentiation through new application

Simplified Architectures:

➢ Integrated E2E / Multi-layer service creation

➢ Automatic reaction on errors or any changes

Financial Benefits:

➢ Opex: efficient service setup

➢ Capex: fast ROI / hardware utilization

➢ New revenue opportunities

Openness:

➢ Open Standards & Interfaces

➢ Open Source SW

Principles of SDN What it Enables in Transport Network

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Keys to success

8

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

A multi-SDO SDN controller architecture

9

Inter-domain

connectivity

Virtual

Networks
Topology

Path

Computation
Provisioning

Multi-SDO Transport SDN Controller

Internal Data Models

NBI

translator

ONF T-API
RESTCONF

server

NETCONF

server

NETCONF

client

RESTCONF

client

gRPC

client

gNMI

client

SBI

translator

IETF TEAS

ONF T-API

IETF TEAS

OpenConfig

OpenROADM

SouthBound Interface

NorthBound Interface

OAM

R. Vilalta et al., Experimental Evaluation of Control and Monitoring Protocols for Optical SDN Networks and

Equipment [Invited Tutorial], JOCN 2021.

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

ETSI TeraFlowSDN 101

10

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Do we need YET another Transport SDN controller?

11

Cloud-
native SDN
controller

for
supporting

future
networks
beyond

5G.

Hosted by
ETSI and
based on
results of

the
European

Union-
funded

TeraFlow
5G PPP

research
project.

Micro-
services

architectur
e provides

key
benefits:

Scalability,
Self-

healing,
Integrity

‘Toolbox’
for ETSI
groups

working
on

network
transform

ation.

Supports
use cases
such as

autonomo
us

networks,
inter-

domain,
and

cybersecur
ity.

Enables
the

alignment
of multi-

SDO goals
and

helping to
accelerate
standardiz

ation
cycles.

ETSI
TeraFlowSDN

to serve as
reference

implementatio
n for Telecom
Infra Project

The source
code of

TeraFlowSDN is
publicly

available under
the Apache

Software
Licence.

ETSI TeraFlowSDN: A growing community

• Members

• Participants (Non-ETSI members)

12

TFS Release 2 Architecture

13

Controlled and managed network elements/domains

• The TeraFlowSDN controller uses its North-Bound Interface (NBI) component (previously known as
Compute) to receive:

• Layer 2 Virtual Private Network (L2VPN) requests and convert them to necessary connectivity
services

• Transport Network Slices via the Slice and Service components.

• The Service component is responsible for selecting, configuring, and deploying the requested
connectivity service through the South-Bound Interface (SBI). To this end, the SBI component interacts
with the network equipment through pluggable drivers. In addition, a Driver Application Programming
Interface (API) has been defined to facilitate the addition of new network protocols and data models
to the SBI component. TeraFlowSDN Release 2 provides extended and validated support for:

• OpenConfig-based routers. Interaction with optical SDN controllers through the Open
Networking Foundation (ONF) Transport API (TAPI).

• Integration for microwave network elements (through the Internet Engineering Task Force - IETF
- network topology YANG model).

• Point-to-Multipoint integration of XR optical transceivers.

• Support for P4 routers that includes loading a P4 pipeline on a given P4 switch; getting runtime
information (i.e., flow tables) from the P4 switch; and pushing runtime entries into the P4 switch
pipeline, thus allowing total usage of P4 switches.

14

gRPC

Device
Servicer

SBI Driver API

IETF N
e

tw
o

rk To
p

o
lo

gy

O
p

en
C

o
n

fig

Tran
sp

o
rt A

P
I

P
4

O
N

F TR
-53

2

X
R

 D
R

IV
ER

Em
u

lated

Support for OpenConfig Whiteboxes

• Support for L2/L3 VPN Network
Models

• Control of whiteboxes with NOS
based on OpenConfig. Validated
with:

• Infinera

• ADVA

• Emulated

• More in the pipeline…

15

© ETSI CC-BY-4.0

Support for P4

• The desired P4 program needs to be written (step 1) by a
network developer and compiled (step 2) by a P4 compiler.

• The P4 compiler generates two outputs:

• A “P4 Info” file (step 3a) which describes the “schema” of the
P4 pipeline for runtime control. This schema captures P4
program attributes such as tables, actions, parameters, etc, in a
target-independent format (I.e., same P4Info for a software
switch, ASIC, etc.);

• A target-specific “P4 bin” binary (step 3b) used to realize a
switch pipeline, such as a binary configuration for an
application-specific integrated circuit (ASIC), a bitstream for a
field-programmable gate array (FPGA), etc.

• At runtime the TeraFlowSDN controller uses a gRPC-based
P4Runtime interface to manage the match-action pipelines
specified in the P4 program.

16

P4 Device

TeraFlow Controller

Stratum OS
P4Runtime Server

Switch
ASIC

P4
program

P4
Compiler

1

2
P4

Info

3a

P4
bin

3b
P4Runtime Client

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Configuration and Monitoring with gNMI

17

Released today!

https://creativecommons.org/licenses/by/4.0/

NBI Extensions

New NBI interfaces

Extend IETF Slice/L2VPN/L3VPN

IETF Topology

Device Inventory

ONF Transport API

MEC BWM API

18

Our single point of entry: https://tfs.etsi.org

19

Hackfest #2: 20-21 June 2023, Madrid (Spain).
Collocated with IEEE NetSoft

Hackfest #3: 16-17 October, Castelldefels (Spain)

TFS Ecosystem day: 18 October, Castelldefels (Spain)

https://tfs.etsi.org/

© ETSI CC-BY-4.0

Bridges to Research – Building the TFS ecosystem

20

TeraFlow

https://creativecommons.org/licenses/by/4.0/

TeraFlowSDN
Demos and Use cases

21

ETSI OpenSourceMANO and ETSI TeraFlowSDN
integration

Demonstration of Zero-touch Device and L3-VPN Service Management using the TeraFlow Cloud-native SDN Controller, Ll.
Gifre, C. Natalino, S. Gonzalez-Diaz, F. Soldatos, S. Barguil, C. Aslanoglou, F. J. Moreno-Muro, A. N. Quispe Cornelio, L.
Cepeda, R. Martinez, C. Manso, V. Apostolopoulos, S. Petteri Valiviita, O. Gonzalez de Dios, J. Rodriguez, R. Casellas, P.
Monti, G. P. Katsikas, R. Muñoz, and R. Vilalta

22

TeraFlowSDN release 1 and cybersecurity

Microservice-Based Unsupervised Anomaly Detection Loop for Optical Networks, Carlos
Natalino, Carlos Manso, Lluis Gifre, Raul Muñoz, Ricard Vilalta, Marija Furdek, Paolo Monti

23

Transport Network Slicing with SLA Using the
TeraFlowSDN Controller

This demo presents the
TeraFlowSDN controller as a
solution to provide dedicated
transport network slices with
SLAs. To this end, the demo
details how the interface
between an NFV orchestrator
and the SDN controller can
provide transport network
slices using protected disjoint
paths.

24

Experimental Demonstration of Transport Network Slicing with SLA Using the TeraFlowSDN Controller
Ll. Gifre, D. King, A. Farrel, R. Casellas, R. Martinez, J.-P. Fernández-Palacios, O. González-de-Dios, J.-J.
Pedreno-Manresa, A. Autenrieth, R. Muñoz, R. Vilalta

DLT-based End-to-end Inter-domain Transport
Network Slice with SLA Management Using
Cloud-based SDN Controllers

25

Network Security

We demonstrate a scalable processing of OPM data using ML to detect anomalies in optical
services at run time. A dashboard will show operational SDN controller metrics, raw OPM
data, and the ML assessment results

26

Carlos Natalino, Lluis Gifre, Raul Muñoz, Ricard Vilalta, Marija
Furdek, Paolo Monti, “Scalable and Efficient Pipeline for ML-
based Optical Network Monitoring”, Demo Zone OFC 2023

Bringing network automation in transport networks

This demonstration
showcases how TeraFlowSDN
provides support for
hierarchical control of
multiple heterogeneous SDN
domains (through IP,
microwave and optical
technologies). Different
transport slices are offered
with multiple SLAs and
grouped to optimize
resources

27

Ll. Gifre, R. Vilalta, J.C. Caja-Díaz, O. Gonzalez de Dios,
J.P. Fernández-Palacios, J.-J. Pedreno-Manresa, A. Autenrieth, M. Silvola,
N. Carapellese, M. Milano, A. Farrel, D. King, R. Martinez, R. Casellas, and
R. Muñoz, “Slice Grouping for Transport Network Slices Using Hierarchical
Multi-domain SDN
Controllers”, Demo zone OFC 2023.

TeraFlowSDN
Evolution

28

Need for TeraFlowSDN evolution

29
20/06/2023

• Intelligent connectivity across a huge number of heterogeneous domains, resources with unlimited
number of application requirements and conflict resolution mechanisms for incompatible requirements.

• IT tools and practices extending to network (NetOps)

Edge – cloud continuum using
Intent Based Networking

• Need to measure impact and deploy networks and services that minimize carbon footprint.
Accountable and Sustainable

Networks

• Need for operational simplicity.

• Need for accelerated innovation.

Disaggregated HW and SW
evolution

• System integrity and self-preservation

• Digital Twin Networks for Protected modesZero Trust Networks

• Competing standards addressing same areas and use cases.Avoid industry fragmentation

Proposed TeraFlowSDN evolution paths

30
20/06/2023

End-to-End Sustainable Data plane
evolution

End-to-End orchestration between SMO and Transport

In-band processing, mission-critical and high priority
traffic flows

Support for sustainable networks

Accountable Edge-cloud continuum

System integrity, self-preservation and accountability

Efficient Network and Service Resource Management in
dynamic multi-tenant environments

Frictionless inter-domain resource management

Innovations of TeraFlowSDN in 6G networks

31

OSS/BSS

CSMF

NSMF

5G Access Network
AN-NSSMF

Transport Network
TN-NSSMF

5G Core Network
5GN-NSSMF

O-SMO
5GC NFMF

PaaS

6G Core

SDN
Controller

Customization

GSMA NEST

NFV MANO

NFV

O-RU

NFV

O-DU

NFV

O-CU

Near-RT RIC

Backhaul
Transport
Network
elements

PaaS

Mid-Haul
Network
Elements

PaaS

Edge
computing

Open Gateway

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

Deploy and Basic use of
TeraFlowSDN

32

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Deploy TeraFlowSDN controller

TeraFlowSDN controller runs a number of microservices on top of a Kubernetes-based environment. For
development and demonstration purposes, we use MicroK8s v1.24.

◉ The minimum requirements are:

◉ Ubuntu 20.04 or 22.04 LTS operating system (server or desktop)

◉ 4 vCPUs @ 100% execution capacity

◉ 8 GB of RAM

◉ 40 GB of storage disk (recommended 60 GB if used for development)

For the sake of simplicity, we provide a pre-installed Ubuntu 22.04 VM with MicroK8s v1.24 installed.

◉ To perform your own installation, follow the steps described in the Wiki pages:

◉ https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.2.-Create-Virtual-Machine/1.2.1.-Introduction

◉ https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.3.-Install-MicroK8s

33

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.2.-Create-Virtual-Machine/1.2.1.-Introduction
https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.3.-Install-MicroK8s

© ETSI CC-BY-4.0

Deploy TeraFlowSDN controller

Before continuing, check the status of your MicroK8s environment as described in

https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.3.-Install-MicroK8s

◉ Check status of MicroK8s:

microk8s.status --wait-ready

◉ If the command reports “microk8s is not running”, start MicroK8s:

microk8s.start

34

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.3.-Install-MicroK8s

© ETSI CC-BY-4.0

Deploy TeraFlowSDN controller

Before continuing, check the status of your MicroK8s environment as described in

https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.3.-Install-MicroK8s

◉ Report status of MicroK8s every second. Wait till addons “dns, helm3, hostpath-storage, ingress,
registry” are enabled, then terminate command with Ctrl+C.

watch -n 1 microk8s.status --wait-ready

◉ Report status of TFS components every second. Wait till all pods are Running and Available, then
terminate command with Ctrl+C.

watch -n 1 kubectl get all --all-namespaces

35

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.3.-Install-MicroK8s

© ETSI CC-BY-4.0

Deploy TeraFlowSDN controller

Specifications to deploy TeraFlowSDN are defined in a bash script as a set of environment
variables. Complete details available in:

https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.4.-Deploy-TeraFlowSDN

◉ Organized in 4 sections:

◉ TeraFlowSDN: variables related to the deployment of TeraFlowSDN controller

◉ CockroachDB: variables related to the deployment of CockroachDB distributed database (used by Context)

◉ NATS: variables related to the deployment of NATS message broker (used by Context)

◉ QuestDB: variables related to the deployment of QuestDB time-series database (used by Monitoring)

◉ Changing the default values for CockroachDB, NATS, and QuestDB is for advanced setups.

◉ Not covered in this session.

36

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.4.-Deploy-TeraFlowSDN

© ETSI CC-BY-4.0

Deploy TeraFlowSDN controller

Specifications to deploy TeraFlowSDN are defined in a bash script as a set of environment
variables.

◉ Example TeraFlowSDN section (check “my_deploy.sh” for the complete list of settings)

37

Set the URL of the internal MicroK8s Docker registry where the images will be uploaded to.
export TFS_REGISTRY_IMAGES="http://localhost:32000/tfs/"

Set the list of components, separated by spaces, you want to build images for, and deploy.
export TFS_COMPONENTS="context device automation monitoring pathcomp service slice compute webui"

Set the tag you want to use for your images.
export TFS_IMAGE_TAG="dev"

Set the name of the Kubernetes namespace to deploy TFS to.
export TFS_K8S_NAMESPACE="tfs"

Set additional manifest files to be applied after the deployment (example, NGINX ingress controller)
export TFS_EXTRA_MANIFESTS="manifests/nginx_ingress_http.yaml"

Set the new Grafana admin password
export TFS_GRAFANA_PASSWORD="admin123+"

Enable skip-build flag to prevent rebuilding the Docker images (images are pre-built, only for demo purposes).
export TFS_SKIP_BUILD="YES"

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Deploy TeraFlowSDN controller

If you want to tweak the deployment specifications, create a copy of “my_deploy.sh”
script and adjust parameters at will.

When you are fine with your specifications, launch the deployment as follows:

The script deploys CockroachDB, NATS and QuestDB, and then procedes with TFS
deployment.

◉ The deployment might take few minutes the first time…

◉ VM is configured with pre-built components to speed-up the deployment.

◉ You should see the progress of the deployment.

38

$ cd ~/tfs-ctrl
$ source my_deploy.sh
$./deploy/all.sh

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Deploy TeraFlowSDN controller

39

Deleting and Creating a new namespace...
…

Create secret with CockroachDB data
Create secret with NATS data
Create secret with QuestDB data

Deploying components and collecting environment variables...
Processing 'context' component...

Building Docker image...
Pushing Docker image to 'http://localhost:32000/tfs/'...
Adapting 'context' manifest file...
Deploying 'context' component to Kubernetes...
Collecting env-vars for 'context' component...

…

Deploying extra manifests...
Processing manifest 'manifests/nginx_ingress_http.yaml'...
ingress.networking.k8s.io/tfs-ingress created

Waiting for 'context' component...
deployment.apps/contextservice condition met
…

Configuring WebUI DataStores and Dashboards...
…

Drop database if exists
Error from server (NotFound): namespaces "crdb" not found

CockroachDB
…
CockroachDB (single-node)
CockroachDB Port Mapping
…

NATS
…
Install NATS (single-node)
NATS Port Mapping
…

QuestDB
…
QuestDB
QuestDB Port Mapping
…

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Deploy TeraFlowSDN controller

The process concludes
reporting the status of
the microservices.

You can always retrieve
this status as follows:

40

$ cd ~/tfs-ctrl
$ source my_deploy.sh
$./deploy/show.sh

Deployment Resources:
NAME READY STATUS RESTARTS AGE
pod/contextservice-55f7f77f-dqfsc 1/1 Running 0 5m12s
pod/deviceservice-67fb99b9dd-cjcsk 1/1 Running 0 5m1s
…

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
service/contextservice ClusterIP 10.152.183.225 <none> 1010/TCP,8080/TCP
service/deviceservice ClusterIP 10.152.183.194 <none> 2020/TCP
…

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/contextservice 1/1 1 1 5m12s
deployment.apps/deviceservice 1/1 1 1 5m1s
…

NAME DESIRED CURRENT READY AGE
replicaset.apps/contextservice-55f7f77f 1 1 1 5m12s
replicaset.apps/deviceservice-67fb99b9dd 1 1 1 5m1s
…

Deployment Ingress:
NAME CLASS HOSTS ADDRESS PORTS AGE
tfs-ingress public * 127.0.0.1 80 3m15s

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Onboard Devices using TeraFlowSDN

TeraFlowSDN enables to create entities through JSON-based descriptor files.

◉ Example (context & topology, see ~/tfs-ctrl/hackfest/tfs-descriptors/emulated-topology.json)

41

{
"contexts": [

{"context_id": {"context_uuid": {"uuid": "admin"}}}
],
"topologies": [

{
"topology_id": {

"context_id": {"context_uuid": {"uuid": "admin"},
"topology_uuid": {"uuid": "admin"}

}}
}

]
}

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

{
"devices": [

{
"device_id": {"device_uuid": {"uuid": "R1"}},
"device_type": "emu-packet-router",
"device_drivers": [0],
"device_endpoints": [],
"device_operational_status": 1,
"device_config": {"config_rules": [

{"action": 1, "custom": {"resource_key": "_connect/address", "resource_value": "127.0.0.1"}},
{"action": 1, "custom": {"resource_key": "_connect/port", "resource_value": "0"}},
{"action": 1, "custom": {"resource_key": "_connect/settings", "resource_value": {"endpoints": [

{"uuid": "1/1", "type": "copper", "sample_types": []},
{"uuid": "1/2", "type": "copper", "sample_types": []},
...

]}}}
]}

},
...

]
}

Onboard Devices using TeraFlowSDN

Onboard an emulated device

◉ Example (see ~/tfs-ctrl/hackfest/tfs-descriptors/emulated-topology.json)

42

Check “src/common/DeviceTypes.py”

Use Emulated driver for this device descriptor.

Check “proto/context.proto” “DeviceDriverEnum”

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

{
"devices": [

{
"device_id": {"device_uuid": {"uuid": "R1"}},
"device_type": "emu-packet-router",
"device_drivers": [0],
"device_endpoints": [],
"device_operational_status": 1,
"device_config": {"config_rules": [

{"action": 1, "custom": {"resource_key": "_connect/address", "resource_value": "127.0.0.1"}},
{"action": 1, "custom": {"resource_key": "_connect/port", "resource_value": "0"}},
{"action": 1, "custom": {"resource_key": "_connect/settings", "resource_value": {"endpoints": [

{"uuid": "1/1", "type": "copper", "sample_types": []},
{"uuid": "1/2", "type": "copper", "sample_types": []},
...

]}}}
]}

},
...

]
}

Onboard Devices using TeraFlowSDN

Onboard an emulated device

◉ Example (see ~/tfs-ctrl/hackfest/tfs-descriptors/emulated-topology.json)

43

Set Mgmt IP address and port of the target device/controller.

(ignored by Emulated driver)

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

{
"devices": [

{
"device_id": {"device_uuid": {"uuid": "R1"}},
"device_type": "emu-packet-router",
"device_drivers": [0],
"device_endpoints": [],
"device_operational_status": 1,
"device_config": {"config_rules": [

{"action": 1, "custom": {"resource_key": "_connect/address", "resource_value": "127.0.0.1"}},
{"action": 1, "custom": {"resource_key": "_connect/port", "resource_value": "0"}},
{"action": 1, "custom": {"resource_key": "_connect/settings", "resource_value": {"endpoints": [

{"uuid": "1/1", "type": "copper", "sample_types": []},
{"uuid": "1/2", "type": "copper", "sample_types": []},
...

]}}}
]}

},
...

]
}

Onboard Devices using TeraFlowSDN

Onboard an emulated device

◉ Example (see ~/tfs-ctrl/hackfest/tfs-descriptors/emulated-topology.json)

44

EndPoints automatically discovered from the device

(except for emulated that we provide them in driver settings)

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

{
"devices": [

{
"device_id": {"device_uuid": {"uuid": "R1"}},
"device_type": "emu-packet-router",
"device_drivers": [0],
"device_endpoints": [],
"device_operational_status": 1,
"device_config": {"config_rules": [

{"action": 1, "custom": {"resource_key": "_connect/address", "resource_value": "127.0.0.1"}},
{"action": 1, "custom": {"resource_key": "_connect/port", "resource_value": "0"}},
{"action": 1, "custom": {"resource_key": "_connect/settings", "resource_value": {"endpoints": [

{"uuid": "1/1", "type": "copper", "sample_types": []},
{"uuid": "1/2", "type": "copper", "sample_types": []},
...

]}}}
]}

},
...

]
}

Onboard Devices using TeraFlowSDN

Onboard an emulated device

◉ Example (see ~/tfs-ctrl/hackfest/tfs-descriptors/emulated-topology.json)

45

By default, DISABLED, will be activated during onboarding.

Check “proto/context.proto” “DeviceOperationalStatusEnum”

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

{
"devices": [

{
"device_id": {"device_uuid": {"uuid": "R1"}},
"device_type": "emu-packet-router",
"device_drivers": [0],
"device_endpoints": [],
"device_operational_status": 1,
"device_config": {"config_rules": [

{"action": 1, "custom": {"resource_key": "_connect/address", "resource_value": "127.0.0.1"}},
{"action": 1, "custom": {"resource_key": "_connect/port", "resource_value": "0"}},
{"action": 1, "custom": {"resource_key": "_connect/settings", "resource_value": {"endpoints": [

{"uuid": "1/1", "type": "copper", "sample_types": []},
{"uuid": "1/2", "type": "copper", "sample_types": []},
...

]}}}
]}

},
...

]
}

Onboard Devices using TeraFlowSDN

Onboard an emulated device

◉ Example (see ~/tfs-ctrl/hackfest/tfs-descriptors/emulated-topology.json)

46

Drivers for real devices/controllers usually contain other

settings, such as username, password, timeout, etc.

(we will see it later)

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Onboard Links

Similarly, Links can be uploaded using JSON-based descriptors.

◉ Example (see ~/tfs-ctrl/hackfest/tfs-descriptors/emulated-topology.json)

◉ Link Template:

47

{
"links": [

{
"link_id": {"link_uuid": {"uuid": "…"}},
"link_endpoint_ids": [

{"device_id": {"device_uuid": {"uuid": "…"}}, "endpoint_uuid": {"uuid": "…"}},
{"device_id": {"device_uuid": {"uuid": "…"}}, "endpoint_uuid": {"uuid": "…"}}

]
}

]
}

Link UUID (if you provide a plain string, a

UUID will be generated automatically)
Specify Device and Endpoint UUIDs (you

can provide them as the device and

endpoint name, the UUID will be located

automatically)

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Create Services

Service requests can be uploaded using JSON-based descriptors as well.

◉ Example (see ~/tfs-ctrl/hackfest/tfs-descriptors/emulated-topology.json)

◉ Service Template:

48

{"services": [{
"service_id": {

"context_id": {"context_uuid": {"uuid": "…"}},
"service_uuid": {"uuid": "…"}

},
"service_type": 1,
"service_status": {"service_status": 1},
"service_endpoint_ids": [

{"device_id": {"device_uuid": {"uuid": "…"}}, "endpoint_uuid": {"uuid": "…"}},
{"device_id": {"device_uuid": {"uuid": "…"}}, "endpoint_uuid": {"uuid": "…"}}

],
"service_constraints": […],
"service_config": {"config_rules": […]}

}]}

Service UUID (if you provide a plain string, a

UUID will be generated automatically)

Set Service Type.

Check “proto/context.proto” “ServiceTypeEnum”

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Create Services

Service requests can be uploaded using JSON-based descriptors as well.

◉ Example (see ~/tfs-ctrl/hackfest/tfs-descriptors/l3-service.json)

◉ Service Template:

49

{"services": [{
"service_id": {

"context_id": {"context_uuid": {"uuid": "…"}},
"service_uuid": {"uuid": "…"}

},
"service_type": 1,
"service_status": {"service_status": 1},
"service_endpoint_ids": [

{"device_id": {"device_uuid": {"uuid": "…"}}, "endpoint_uuid": {"uuid": "…"}},
{"device_id": {"device_uuid": {"uuid": "…"}}, "endpoint_uuid": {"uuid": "…"}}

],
"service_constraints": […],
"service_config": {"config_rules": […]}

}]}

Set Service Status. During provisioning: PLANNED.

Check “proto/context.proto” “ServiceStatusEnum”

Specify Device and Endpoint UUIDs (you can

provide them as the device and endpoint name,

the UUID will be located automatically)

Specify Service-specifuc Constraints (SLAs,

Capacity, Latency, etc) and Config Rules (IP

addresses to use, VLAN tags, etc.).

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Inspect elements created

50

Click to Show

Details

The details of the managed entities can be shown using the “eye” button.

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Error checking, if something went wrong…

Check the logs of the TeraFlowSDN components:

◉ Example: Device component

51

$ cd ~/tfs-ctrl
$ source my_deploy.sh
$ scripts/show_logs_device.sh

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Exercise: Onboard Emulated Topology & Create Service

• Onboard Emulated Topology (~/tfs-ctrl/hackfest/tfs-descriptors/emulated-topology.json)

• Use Upload form in “Home” tab

• Select the created “Context/Topology” in “Home” tab

• Check devices in the “Device” tab

• Check links in the “Link” tab

• Create L3 Service (~/tfs-ctrl/hackfest/tfs-descriptors/l3-service.json)

• Check Service in the “Service” tab

10 minutes

52

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

Introduction to ContainerLab

53

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Network Emulation

54

https://containerlab.dev/ https://www.gns3.com/

… and many more: https://www.brianlinkletter.com/2023/02/network-emulators-and-network-simulators-

2023/

https://creativecommons.org/licenses/by/4.0/
https://containerlab.dev/
https://www.gns3.com/
https://www.brianlinkletter.com/2023/02/network-emulators-and-network-simulators-2023/

© ETSI CC-BY-4.0

ContainerLab

55

https://containerlab.dev/

• Many Network Operating Systems

• Some containerized, others require VMs.

• Experts need to run NOSes on demand in user-defined topologies

• Experimentation, testing, development, etc.

• Container orchestration tools (e.g., docker-compose) does not fit
well with this purpose.

• Unable to create connections defining the topology.

https://creativecommons.org/licenses/by/4.0/
https://containerlab.dev/

© ETSI CC-BY-4.0

ContainerLab

56

https://containerlab.dev/

ContainerLab:

• CLI for orchestration and managing container-based networking labs

• Starts containers, builds virtual wiring between them.

• Manage labs lifecycle.

• Support for many network device kinds
(https://containerlab.dev/manual/kinds/)

• Many examples (https://containerlab.dev/lab-examples/lab-
examples/)

https://creativecommons.org/licenses/by/4.0/
https://containerlab.dev/
https://containerlab.dev/manual/kinds/
https://containerlab.dev/lab-examples/lab-examples/

© ETSI CC-BY-4.0

ContainerLab - Examples

57

https://containerlab.dev/

https://creativecommons.org/licenses/by/4.0/
https://containerlab.dev/

© ETSI CC-BY-4.0

Quick Start (I)

58

https://containerlab.dev/

Download and install the latest release (may require sudo)

bash -c "$(curl -sL https://get.containerlab.dev)"

Topology definition

name: srlceos01
topology:
nodes:
srl:
kind: srl
image: ghcr.io/nokia/srlinux

ceos:
kind: ceos
image: ceos:4.25.0F

links:
- endpoints: ["srl:e1-1", "ceos:eth1"]

Additional Details:

https://containerlab.dev/quickstart/

NOTE: for this example you need to get a license for CEOS;

We Will only use SRL that can be used without a license.

https://creativecommons.org/licenses/by/4.0/
https://containerlab.dev/
https://get.containerlab.dev/
https://containerlab.dev/quickstart/

© ETSI CC-BY-4.0

Quick Start (II)

59

https://containerlab.dev/

Check that container images are available

$ docker images | grep -E "srlinux|ceos"
REPOSITORY TAG IMAGE ID CREATED SIZE
ghcr.io/nokia/srlinux latest 79019d14cfc7 3 months ago 1.32GB
ceos 4.25.0F 15a5f97fe8e8 3 months ago 1.76GB

Start the lab deployment

$ mkdir ~/clab-quickstart
$ cd ~/clab-quickstart
$ cp -a /etc/containerlab/lab-examples/srlceos01/* .
$ containerlab deploy --topo srlceos01.clab.yml
…

Additional Details:

https://containerlab.dev/quickstart/

+---+---------------------+--------------+-----------------------+------+-------+---------+----------------+----------------------+
| # | Name | Container ID | Image | Kind | Group | State | IPv4 Address | IPv6 Address |
+---+---------------------+--------------+-----------------------+------+-------+---------+----------------+----------------------+
| 1 | clab-srlceos01-ceos | 2e2e04a42cea | ceos:4.25.0F | ceos | | running | 172.20.20.3/24 | 2001:172:20:20::3/80 |
| 2 | clab-srlceos01-srl | 1b9568fcdb01 | ghcr.io/nokia/srlinux | srl | | running | 172.20.20.4/24 | 2001:172:20:20::4/80 |
+---+---------------------+--------------+-----------------------+------+-------+---------+----------------+----------------------+

https://creativecommons.org/licenses/by/4.0/
https://containerlab.dev/
https://containerlab.dev/quickstart/

© ETSI CC-BY-4.0

Quick Start (III)

60

https://containerlab.dev/

Connecting to the nodes

$ docker exec -it clab-srlceos01-srl1 sr_cli
$ docker exec -it clab-srlceos01-srl1 bash

$ ssh admin@172.20.20.3
admin@172.20.20.3's password:
Using configuration file(s): []
Welcome to the srlinux CLI.
Type 'help' (and press <ENTER>) if you need any help using this.
--{ running }--[]--
A:srl1#

Creates /etc/hosts entries so you can use names
$ ssh admin@clab-srlceos01-srl

Additional Details:

https://containerlab.dev/quickstart/

Destroying a lab

$ containerlab destroy --topo srlceos01.clab.yml

https://creativecommons.org/licenses/by/4.0/
https://containerlab.dev/
https://containerlab.dev/quickstart/

© ETSI CC-BY-4.0

Why we need ContainerLab?

61

NFV Orchestrator

VNF 1

internal

net

VDU 1 - mgmt VM

VDU 2 - data VM

Virtual Infrastructure

Manager

mgmt

net

VNF 2

internal

net

VDU 1 - mgmt VM

VDU 2 - data VM

Virtual Infrastructure

Manager

mgmt

net

WAN Infrastructure

Manager

data

net

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

ETSI OSM-TFS Long-Term Testbed Proposal

62

provider eth1

OVS

(br-ex)

providereth1

OVS

(br-ex)

OpenStack
REST-API

OpenStack
REST-API

IETF L2VPN

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Your participation is very valuable!

63

You can help us in creating the new

ETSI OSM-TFS Long-Term Testbed!

Your feedback and ideas are welcome!

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

Introduction to gNMI and
OpenConfig

64

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

gNMI and OpenConfig

• gNMI: transport protocol based on gRPC used to exchange configuration messages and
monitoring data.

• OpenConfig: a data model defined using the YANG language. It is used to encode the
data sent through gNMI.

• Topics in this section:

• YANG

• OpenConfig

• gRPC

• gNMI

65

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

YANG

66

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Unified Information and Data Modeling

In general, a device (or system) :

• Information Model macroscopically describes the device capabilities, in terms of operations and configurable parameters, using high level abstractions
without specific details on aspects such as a particular syntax or encoding.

• Data Model determines the structure, syntax and semantics of the data that is externally visible.

Unified information and data modeling language to describe a device capabilities, attributes, operations to be performed on a device or system and
notifications

• A common language with associated tools

• Enabling complex models with complex semantics, flexible, supporting extensions and augmentations

• A “best-practice” and guidelines for model authors

An architecture for remote configuration and control

• Client / Server, supporting multiple clients, access lists, transactional semantics, roll-back

• An associated transport protocol provides primitives to view and manipulate the data, providing a suitable encoding as defined by the data-model. ➔
Ideally, data models should be protocol independent

• Standard, agreed upon models for devices ➔ Huge activity area, Hard to reach consensus (controversial aspects). Some models do exist. Most stable
ones cover mature aspects (interface configuration, RIB, BGP routing)

67

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

The YANG Language I

• YANG has become the data modeling language of choice for multiple
network control and management aspects

• Covering devices, networks, and services, even pre-existing protocols.

• YANG models configuration and state data.

• Significantly adopted, due in part, for its features and flexibility and the availability of
tools.

• Examples:

• An SDN controller may export the underlying optical topology in a format that is unambiguously
determined by its associated YANG schema,

• A high-level service may be described so that an SDN controller is responsible for mediating and
associating high-level service operations to per-device configuration operations.

68

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

The YANG Language II

• Models define the device configurations & notifications, capture semantic details and are easy to
understand.

• Ongoing notable effort across the SDOs to model constructs (e.g. topologies, protocols)

• A YANG model includes a header, imports and include statements, type definitions, configurations and
operational data declarations as well as actions (RPC) and notifications.

• The language is expressive enough to:

• Structure data into data trees within the so called datastores, by means of encapsulation of containers and lists, and to define
constrained data types (e.g. following a given textual pattern).

• Condition the presence of specific data to the support of optional features.

• Allow the refinement of models by extending and constraining existing models (by inheritance/augmentation), resulting in a
hierarchy of models.

• Define configuration and/or state data.

69

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

A YANG model for network topology

A network consists of:

◉ Nodes and Links

A node consists of:

◉ node-id and ports

A port consists of:

◉ port-id and type of port

A link consists of:

◉ link-id, reference to source node, reference to target node, reference to source port and reference to
target port.

70

Node1
A

Node2
B

Link1

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

topology.yang

71

module topology {

namespace "urn:topology";

prefix "topology";

organization

"CTTC";

contact

"ricard.vilalta@cttc.es";

description

"Basic example of network

topology";

revision "2018-08-24" {

description "Basic

example of network

topology";

reference "";

}

typedef layer-protocol-name {

type enumeration {

enum "ETH";

enum "OPTICAL";

}

}

…

…

grouping port {

leaf port-id {

type string;

}

leaf layer-protocol-name {

type layer-protocol-

name;

}

}

grouping node {

leaf node-id {

type string;

}

list port {

key "port-id";

uses port;

}

}

…

grouping topology {

list node {

key "node-id";

uses node;

}

list link {

key "link-id";

uses link;

}

}

/**

* Container/lists

*/

container topology {

uses topology;

}

…

grouping link {

leaf link-id {

type string;

}

leaf source-node {

type leafref {

path "/topology/node/node-id";

}

}

leaf target-node {

type leafref {

path "/topology/node/node-id";

}

}

leaf source-port {

type leafref {

path "/topology/node/port/port-id";

}

}

leaf target-port {

type leafref {

path "/topology/node/port/port-id";

}

}

}

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

[Tool] pyang

An extensible YANG validator and converter in python https://github.com/mbj4668/pyang

◉ Check correctness, to transform YANG modules into other formats, and to generate code from the
modules

72

pyang -f tree topology.yang

module: topology

+--rw topology

+--rw node* [node-id]

| +--rw node-id string

| +--rw port* [port-id]

| +--rw port-id string

| +--rw layer-protocol-name? layer-protocol-name

+--rw link* [link-id]

+--rw link-id string

+--rw source-node? -> /topology/node/node-id

+--rw target-node? -> /topology/node/node-id

+--rw source-port? -> /topology/node/port/port-id

+--rw target-port? -> /topology/node/port/port-id

pyang -f sample-xml-skeleton --sample-xml-skeleton-annotations

topology.yang

<?xml version='1.0' encoding='UTF-8'?>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<topology xmlns="urn:topology">

<node>

<!-- # entries: 0.. -->

<node-id><!-- type: string --></node-id>

<port>

<!-- # entries: 0.. -->

<port-id><!-- type: string --></port-id>

<layer-protocol-name><!-- type: layer-protocol-name --></layer-protocol-

name>

</port>

</node>

<link>

<!-- # entries: 0.. -->

<link-id><!-- type: string --></link-id>

<source-node><!-- type: leafref --></source-node>

<target-node><!-- type: leafref --></target-node>

<source-port><!-- type: leafref --></source-port>

<target-port><!-- type: leafref --></target-port>

</link>

</topology>

</data>

https://creativecommons.org/licenses/by/4.0/
https://github.com/mbj4668/pyang

© ETSI CC-BY-4.0

UML diagram

PlantUML is an opensource tool to create UML diagrams

Pyang is able to create an UML diagram of the desired yang
module

Only a certain version of PlantUML is compatible with
provided output:

http://sourceforge.net/projects/plantuml/files/plantuml.7997.jar/download

73

pyang -f uml topology.yang -o topology.uml

java -jar plantuml.jar topology.uml

https://creativecommons.org/licenses/by/4.0/
http://sourceforge.net/projects/plantuml/files/plantuml.7997.jar/download

© ETSI CC-BY-4.0

From YANG to code: pyangbind

PyangBind is a plugin for Pyang that generates a Python class hierarchy from a YANG data
model. The resulting classes can be directly interacted with in Python. Particularly,
PyangBind will allow you to:

◉ Create new data instances - through setting values in the Python class hierarchy.

◉ Load data instances from external sources - taking input data from an external source and allowing it
to be addressed through the Python classes.

◉ Serialise populated objects into formats that can be stored, or sent to another system (e.g., a network
element).

Please install from sources. It includes new serialization to XML.

74

Source: https://github.com/robshakir/pyangbind

$ export PYBINDPLUGIN=`/usr/bin/env python -c \

'import pyangbind; import os; print ("{}/plugin".format(os.path.dirname(pyangbind.__file__)))’`

$ echo $PYBINDPLUGIN

$ pyang -f pybind topology.yang --plugindir $PYBINDPLUGIN -o binding_topology.py

https://creativecommons.org/licenses/by/4.0/
https://github.com/robshakir/pyangbind

© ETSI CC-BY-4.0

How to Create a topology

Create an XML and a JSON that is compliant with topology.yang

Use the proposed simple network topology

Import the generated pyangbind bindings

Use pyangbind serializers

75

Node1
A

Node2
B

Link1

Basic pyangbind tutorial:

https://github.com/robshakir/pyangbind#getting-started
from binding_topology import topology

from pyangbind.lib.serialise import pybindIETFXMLEncoder

import pyangbind.lib.pybindJSON as pybindJSON

topo = topology()

node1=topo.topology.node.add("node1")

node1.port.add("node1portA")

node2=topo.topology.node.add("node2")

node2.port.add("node2portA")

link=topo.topology.link.add("link1")

link.source_node = "node1"

link.target_node = "node2"

link.source_port = "node1portA"

link.target_port = "node2portA"

print(pybindIETFXMLEncoder.serialise(topo))
print(pybindJSON.dumps(topo))

$ python3 topology.py

https://creativecommons.org/licenses/by/4.0/
https://github.com/robshakir/pyangbind#getting-started

© ETSI CC-BY-4.0

Topology XML vs JSON

76

<topology xmlns="urn:topology">

<topology>

<node>

<node-id>node1</node-id>

<port>

<port-id>node1portA</port-id>

</port>

</node>

<node>

<node-id>node2</node-id>

<port>

<port-id>node2portA</port-id>

</port>

</node>

<link>

<target-node>node2</target-node>

<source-port>node1portA</source-port>

<link-id>link1</link-id>

<source-node>node1</source-node>

<target-port>node2portA</target-port>

</link>

</topology>

</topology>

{

"topology": {

"node": {

"node1": {

"node-id": "node1",

"port": {

"node1portA": {

"port-id": "node1portA"

}

}

},

"node2": {

"node-id": "node2",

"port": {

"node2portA": {

"port-id": "node2portA"

}

}

}

},

"link": {

"link1": {

"link-id": "link1",

"source-port": "node1portA",

"target-node": "node2",

"target-port": "node2portA",

"source-node": "node1"

}

}

}

}

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

OpenConfig

77

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

OpenConfig Projects

78

Data models

Models for common

configuration and

operational state across

platforms

Streaming telemetry

Scalable, secure, real-time

monitoring with modern

streaming protocols

RPCs and tools

Management RPC specs

and implementations

Tooling to build config and

monitoring stacks

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

OpenConfig

Data models for configuration and operational state, written in YANG

Initial focus: device data for switching, routing, and transport

Development priorities driven by operator requirements

Technical engagement with major vendors to deliver native implementations

79

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

OpenConfig Data Model Principles

Modular model definition

Model structure combines

◉ Configuration (intended)

◉ Operational data (applied config and derived state)

Each module subtree declares config and state

containers.

Model backward compatibility

◉ Driven by use of semantic versioning (xx.yy.zz)

◉ Diverges from IETF YANG guidelines (full compatibility)

String patterns (regex) follow POSIX notation (instead of W3C as defined by IETF)

80

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

OpenConfig L3 data models – Interfaces

81

module: openconfig-interfaces
+--rw interfaces

+--rw interface* [name]
+--rw name -> ../config/name
+--rw config
| +--rw name? string
| +--rw type identityref
| +--rw mtu? uint16
| +--rw loopback-mode? boolean
| +--rw description? string
| +--rw enabled? boolean
+--ro state
| +--ro name? string
| +--ro type identityref
| +--ro admin-status enumeration
| +--ro oper-status enumeration
| ...
| +--ro counters
| +--ro in-octets? oc-yang:counter64
| +--ro in-pkts? oc-yang:counter64
| +--ro out-octets? oc-yang:counter64
| +--ro out-pkts? oc-yang:counter64
| ...
| ...
|
+--rw subinterfaces

+--rw subinterface* [index]
+--rw index -> ../config/index
+--rw config
| +--rw index? uint32
| +--rw description? string
| +--rw enabled? boolean
+--ro state

...

module: openconfig-vlan
augment /oc-if:interfaces/oc-if:interface/oc-if:subinterfaces/oc-if:subinterface:
+--rw vlan

+--rw config
| x--rw vlan-id? union
+--ro state
| x--ro vlan-id? union
+--rw match
| +--rw single-tagged
| | +--rw config
| | | +--rw vlan-id? oc-vlan-types:vlan-id
| | +--ro state
| | +--ro vlan-id? oc-vlan-types:vlan-id
| ...
...

module: openconfig-if-ip
augment /oc-if:interfaces/oc-if:interface/oc-if:subinterfaces/oc-if:subinterface:
+--rw ipv4

+--rw addresses
| +--rw address* [ip]
| +--rw ip -> ../config/ip
| +--rw config
| | +--rw ip? oc-inet:ipv4-address
| | +--rw prefix-length? uint8
| +--ro state
| | +--ro ip? oc-inet:ipv4-address
| | +--ro prefix-length? uint8
| | +--ro origin? ip-address-origin
| ...
...

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

OpenConfig L3 data models – Network Instance

82

module: openconfig-network-instance
+--rw network-instances

+--rw network-instance* [name]
+--rw name -> ../config/name
+--rw config
| +--rw name? string
| +--rw type? identityref
| +--rw enabled? boolean
| +--rw router-id? yang:dotted-quad
| +--rw route-distinguisher? oc-ni-types:route-distinguisher
| ...
+--ro state ...
......
+--rw interfaces
| +--rw interface* [id]
| +--rw id -> ../config/id
| +--rw config
| | +--rw id? string
| | +--rw interface? -> /interfaces/interface/name
| | +--rw subinterface? -> /interfaces/interface[…]/
| subinterfaces/subinterface/index
+--rw tables
| +--rw table* [protocol address-family]
| +--rw protocol -> ../config/protocol
| +--rw address-family -> ../config/address-family
| +--rw config
| | +--rw protocol? -> …/protocol/config/identifier
| | +--rw address-family? identityref
| +--ro state ...

…

+--rw protocols
+--rw protocol* [identifier name]

+--rw identifier -> ../config/identifier
+--rw name -> ../config/name
+--rw config
| +--rw identifier? identityref
| +--rw name? string
| ...
+--rw static-routes
| +--rw static* [prefix]
| +--rw prefix -> ../config/prefix
| +--rw config
| | +--rw prefix? inet:ip-prefix
| | +--rw next-hop* union
... ...
+--rw bgp ...
+--rw ospfv2 ...
+--rw isis ...
...

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

gRPC

83

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

What is gRPC

• gRPC stands for gRPC Remote Procedure Calls

• A high performance, general purpose, feature-rich RPC framework

• Part of Cloud Native Computing Foundation

• HTTP/2 and mobile first

• Open sourced version of Stubby RPC used in Google

84

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

gRPC architecture

85

Source:

https://grpc.io/

https://creativecommons.org/licenses/by/4.0/
https://grpc.io/

© ETSI CC-BY-4.0

Protocol Buffers

Interface Definition Language (IDL)

◉ Describe once and generate interfaces for any language.

Data Model

◉ Structure of the request and response.

Describes Wire format

◉ Binary format for network transmission.

◉ No more parsing text!

◉ Compression

◉ Streaming

Compilation:

86

syntax = "proto3";

option java_multiple_files = true;

option java_package = "com.grpc.search";

option java_outer_classname = "SearchProto";

option objc_class_prefix = "GGL";

package search;

service Google {

// Search returns a Search Engine result for the query.

rpc Search(Request) returns (Result) {}

}

message Request {

string query = 1;

}

message Result {

string title = 1;

string url = 2;

string snippet = 3;

}$ protoc -I=. --python_out=out_dir/ example.proto

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

gRPC Main Use Cases and architecture

Efficiently connecting polyglot services in microservices style architecture

Connecting mobile devices, browser clients to backend services

Generating efficient client libraries

Low latency, highly scalable, distributed systems.

87

$ pip3 install grpcio-tools googleapis-common-protos

$ sudo apt install protobuf-compiler

Supported Languages

(https://grpc.io/docs/languages/):

• C# / .NET

• C++

• Dart

• Go

• Java

• Kotlin

• Node

• Objective-C

• PHP

• Python

• Ruby

https://creativecommons.org/licenses/by/4.0/
https://grpc.io/docs/languages/

© ETSI CC-BY-4.0

Usage of protobufs

Translate connection.yang to protobuf

Create a script that writes new connections to a file

Create a script that lists all stored connections from a file

You can use the following tutorial

Warning: Be “careful” with hyphens!

88

https://developers.google.com/protocol-buffers/docs/pythontutorial

https://creativecommons.org/licenses/by/4.0/
https://developers.google.com/protocol-buffers/docs/pythontutorial

© ETSI CC-BY-4.0

connection.proto

89

//Example of connection

syntax = "proto3";

package connection;

message Connection {

string connectionId = 1;

string sourceNode = 2;

string targetNode = 3;

string sourcePort = 4;

string targetPort = 5;

uint32 bandwidth = 6;

enum LayerProtocolName {

ETH = 0;

OPTICAL = 1;

}

LayerProtocolName layerProtocolName = 7;

}

message ConnectionList {

repeated Connection connection = 1;

}

$ cd ~/tfs-ctrl/hackfest/grpc

$ python -m grpc_tools.protoc -I=. --python_out=connection/ connection.proto

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Create Connection

90

#! /usr/bin/env python3

import connection_pb2

import sys

def PromptForConnection(connection):

connection.connectionId = raw_input("Enter connectionID:

")

connection.sourceNode = raw_input("Enter sourceNode: ")

connection.targetNode = raw_input("Enter targetNode: ")

connection.sourcePort = raw_input("Enter sourcePort: ")

connection.targetPort = raw_input("Enter targetPort: ")

connection.bandwidth = int(raw_input("Enter bandwidth: ")

)

type = raw_input("Is this a eth or optical connection? ")

if type == "eth":

connection.layerProtocolName =

connection_pb2.Connection.ETH

elif type == "optical":

connection.layerProtocolName =

connection_pb2.Connection.OPTICAL

else:

print("Unknown layerProtocolName type; leaving as

default value.")

…

…

if __name__ == '__main__':

if len(sys.argv) != 2:

print("Usage:", sys.argv[0], "CONNECTION_FILE")

sys.exit(-1)

connectionList = connection_pb2.ConnectionList()

Read the existing address book.

try:

with open(sys.argv[1], "rb") as f:

connectionList.ParseFromString(f.read())

except IOError:

print(sys.argv[1] + ": File not found. Creating a new file.")

Add an address.

PromptForConnection(connectionList.connection.add())

Write the new address book back to disk.

with open(sys.argv[1], "wb") as f:

f.write(connectionList.SerializeToString())

$ cd ~/tfs-ctrl/hackfest/grpc/connection

$ python3 create.py connection.txt

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

List Connection

91

#! /usr/bin/env python3

from __future__ import print_function

import connection_pb2

import sys

Iterates though all connections in the ConnectionList and

prints info about them.

def ListConnections(connectionList):

for connection in connectionList.connection:

print("connectionID:", connection.connectionId)

print(" sourceNode:", connection.sourceNode)

print(" targetNode:", connection.targetNode)

print(" sourcePort:", connection.sourcePort)

print(" targetPort:", connection.targetPort)

print(" bandwidth:", connection.bandwidth)

if connection.layerProtocolName ==

connection_pb2.Connection.ETH:

print(" layerProtocolName:ETH")

elif connection.layerProtocolName ==

connection_pb2.Connection.OPTICAL:

print(" layerProtocolName:OPTICAL")

…

…

if __name__ == '__main__':

if len(sys.argv) != 2:

print("Usage:", sys.argv[0], "CONNECTION_FILE")

sys.exit(-1)

connectionList = connection_pb2.ConnectionList()

Read the existing address book.

with open(sys.argv[1], "rb") as f:

connectionList.ParseFromString(f.read())

ListConnections(connectionList)

$ cd ~/tfs-ctrl/hackfest/grpc/connection

$ python3 list.py connection.txt

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Create a gRPC client/server

Example tutorial

Extend connection.proto to connectionService.proto with following service:

92

https://grpc.io/docs/tutorials/basic/python.html

service ConnectionService {

rpc CreateConnection (Connection) returns (google.protobuf.Empty) {}

rpc ListConnection (google.protobuf.Empty) returns (ConnectionList) {}

}

$ cd ~/tfs-ctrl/hackfest/grpc

$ python -m grpc_tools.protoc -I=. --python_out=connectionService/ --

grpc_python_out=connectionService/ connectionService.proto

https://creativecommons.org/licenses/by/4.0/
https://grpc.io/docs/tutorials/basic/python.html

© ETSI CC-BY-4.0

connectionService_server.py

93

from concurrent import futures

import time

import logging

import grpc

import connectionService_pb2

import connectionService_pb2_grpc

from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2

_ONE_DAY_IN_SECONDS = 60 * 60 * 24

class connectionService(connectionService_pb2_grpc.ConnectionServiceServicer):

def __init__(self):

self.connectionList = connectionService_pb2.ConnectionList()

def CreateConnection(self, request, context):

logging.debug("Received Connection " + request.connectionId)

self.connectionList.connection.extend([request])

return google_dot_protobuf_dot_empty__pb2.Empty()

def ListConnection(self, request, context):

logging.debug("List Connections")

return self.connectionList

def serve():

server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))

connectionService_pb2_grpc.add_ConnectionServiceServicer_to_server(connectionService(), server)

server.add_insecure_port('[::]:50051')

logging.debug("Starting server")

server.start()

try:

while True:

time.sleep(_ONE_DAY_IN_SECONDS)

except KeyboardInterrupt:

server.stop(0)

if __name__ == '__main__':

logging.basicConfig(level=logging.DEBUG)

serve()

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

connectionService_client.py

94

from __future__ import print_function

import grpc

import connectionService_pb2

import connectionService_pb2_grpc

from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2

def createConnection():

with grpc.insecure_channel('localhost:50051') as channel:

connection=connectionService_pb2.Connection()

connection.connectionId = raw_input("Enter connectionID: ")

connection.sourceNode = raw_input("Enter sourceNode: ")

connection.targetNode = raw_input("Enter targetNode: ")

connection.sourcePort = raw_input("Enter sourcePort: ")

connection.targetPort = raw_input("Enter targetPort: ")

connection.bandwidth = int(raw_input("Enter bandwidth: "))

stub = connectionService_pb2_grpc.ConnectionServiceStub(channel)

response = stub.CreateConnection(connection)

print("ConnectionService client received: " + str(response))

def listConnection():

with grpc.insecure_channel('localhost:50051') as channel:

stub = connectionService_pb2_grpc.ConnectionServiceStub(channel)

response = stub.ListConnection(google_dot_protobuf_dot_empty__pb2.Empty())

print("ConnectionService client received: " + str(response))

if __name__ == '__main__':

createConnection()

listConnection()

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Run example

Run Server

Run client

95

$ cd ~/tfs-ctrl/hackfest/grpc/connectionService

$ python3 connectionService_server.py

$ cd ~/tfs-ctrl/hackfest/grpc/connectionService

$ python3 connectionService_client.py

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

gNMI

96

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

RPCs and gNMI

• gNMI is a protocol for the modification and retrieval of configuration from a target
device, as well as the control and generation of telemetry streams from a target device
to a data collection system.

• This gNMI is described using Protobuf:

• The data can be either encoded in JSON or in Protobuf (Currently in JSON).

97

https://github.com/openconfig/gnmi

https://github.com/openconfig/gnmi/blob/master/proto/gnmi/gnmi.proto

https://creativecommons.org/licenses/by/4.0/
https://github.com/openconfig/gnmi
https://github.com/openconfig/gnmi/blob/master/proto/gnmi/gnmi.proto

© ETSI CC-BY-4.0

Why gNMI?

Provides a single service for state management (streaming telemetry and configuration)

Built on a modern standard, secure transport and open RPC framework with many
language bindings

Supports very efficient serialization and data access

◉ 3x-10x smaller than XML

Offers an implemented alternative to NETCONF, RESTCONF, …

◉ early-release implementations on multiple router and transport platforms

◉ reference tools published by OpenConfig

https://datatracker.ietf.org/meeting/98/materials/slides-98-rtgwg-gnmi-intro-draft-
openconfig-rtgwg-gnmi-spec-00

98

https://creativecommons.org/licenses/by/4.0/
https://datatracker.ietf.org/meeting/98/materials/slides-98-rtgwg-gnmi-intro-draft-openconfig-rtgwg-gnmi-spec-00

© ETSI CC-BY-4.0

gNMI Terminology

• Telemetry - refers to streaming data relating to underlying characteristics of the device
- either operational state or configuration.

• Configuration - elements within the data schema which are read/write and can be
manipulated by the client.

• Target - the device within the protocol which acts as the owner of the data that is being
manipulated or reported on. Typically this will be a network device.

• Client - the device or system using the protocol described in this document to
query/modify data on the target, or act as a collector for streamed data. Typically this
will be a network management system.

99

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

gNMI protocol buffer

100

service gNMI {

rpc Capabilities(CapabilityRequest) returns (CapabilityResponse);

rpc Get(GetRequest) returns (GetResponse);

rpc Set(SetRequest) returns (SetResponse);

rpc Subscribe(stream SubscribeRequest) returns (stream SubscribeResponse);

}

message GetRequest {

Path prefix = 1;

repeated Path path = 2;

enum DataType {

ALL = 0;

CONFIG = 1;

STATE = 2;

OPERATIONAL = 3;

}

DataType type = 3;

Encoding encoding = 5;

repeated ModelData use_models = 6;

repeated gnmi_ext.Extension extension = 7;

}

message GetResponse {

repeated Notification notification = 1;

Error error = 2 [deprecated=true];

repeated gnmi_ext.Extension extension = 3;

}

message CapabilityRequest {

repeated gnmi_ext.Extension extension = 1;

}

message CapabilityResponse {

repeated ModelData supported_models = 1;

repeated Encoding supported_encodings = 2;

string gNMI_version = 3;

repeated gnmi_ext.Extension extension = 4;

}

message ModelData {

string name = 1;

string organization = 2;

string version = 3;

}

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Better visibility with streaming telemetry

Operational state monitoring is crucial for network health and traffic management.
Examples:

◉ Counters, power levels, protocol stats, up/down events, inventory, alarms

101

SNMP / TL1 Polling

NE

#1

NE

#2

NE

#3

• O(min) polling

• Resource drain

on devices

• Legacy

implementation

• Inflexible

structure

Telemetry collector

NE

#1

NE

#2

NE

#3

• Subscribe to

desired data

based on

models

• Streamed

directly from

devices

• Time-series or

event-driven

data

• Modern, secure

transport

Openconfig data models

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Using gNMIc

• Installation

sudo bash -c "$(curl -sL https://get-gnmic.kmrd.dev)"

• Capabilities request

gnmic -a clab-srlinux-srl1 -u admin -p NokiaSrl1! --skip-verify capabilities

• Get request

gnmic -a clab-srlinux-srl1 -u admin -p NokiaSrl1! --skip-verify -e json_ietf get --path
/interface[name=mgmt0]

102

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Using gNMIc

• Get request

gnmic -a clab-srlinux-srl1 -u admin -p NokiaSrl1! --skip-verify -e json_ietf get --path
/system/name/host-name

• Set request

gnmic -a clab-srlinux-srl1 -u admin -p NokiaSrl1! --skip-verify -e json_ietf set --update-path
/system/name/host-name --update-value slr11

(check with previous Get Request)

• Subscribe request

gnmic -a clab-srlinux-srl1 -u admin -p NokiaSrl1! --skip-verify -e json_ietf subscribe --path
/interface[name=mgmt0]/statistics

(In another terminal, you can generate traffic) ssh admin@clab-srlinux-srl1

103

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

Presentation of the challenges

104

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Proposed mini-testbed per team

105

Provided VBox VMProvided VBox VM

NAT

(Internet

Access)

NAT

(Internet

Access)

Bridged to

physical port

Bridged to

physical port

VM requirements:

- VirtualBox 6.1.40 or newer

- 4 vCPU

- 8 GB RAM

- 60 GB disk

Also install on the host:

- VSCode

- Remote devel Ext. for VSCode

- MobaXterm or other SSH client

If you have a powerful laptop, you

can try to run both VMs, but expect

fan noise ☺.(cables provided by us)

Networking settings:

- Configure static IP/mask (e.g., 172.100.99.{1,2}/24)

- On TFS VM, configure route to ContainerLab VM, specifically, to its internal mgmt network:

ip route add net 172.100.100.0/24 via 172.100.99.2

172.100.99.0/24.1 .2

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Target ContainerLab Scenario

106

172.16.1.0/24

client1 srl1 srl2 client2

172.16.2.0/24172.0.0.0/24

eth1

.10

eth1

.10

e-1/2

.1

e-1/1

.1

e-1/2

.1

e-1/2

.2

mgmt-net (172.100.100.0/24)

eth0

.201

mgmt0

.101

mgmt0

.102

eth0

.202

ip address add 172.16.1.10/24 dev eth1
ip route add 172.16.2.0/24 via 172.16.1.1

ip address add 172.16.2.10/24 dev eth1
ip route add 172.16.1.0/24 via 172.16.2.1

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Challenges

• Have fun and learn in the meanwhile! ☺

• Learn a bit on TeraFlowSDN and ContainerLab

• Create your local testbed

• Deploy TFS

• Deploy Scenario in ContainerLab

• Onboard the Devices from the ContainerLab Scenario in TFS

• Some descriptors are provided as reference (~/tfs-ctrl/hackfest/containerlab)

• Configure a Service with Static Routing in the devices

• Some descriptors are provided as reference (~/tfs-ctrl/hackfest/containerlab)

• Monitor the traffic in the device ports through Grafana

107

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Useful notes

Many details are provided in file: ~/tfs-ctrl/hackfest/containerlab/commands.txt

• IMPORTANT: for Nokia SR Linux, use kind "srl" and type "ixr6“

• Other types of hardware do not support OpenConfig or require a License

• IMPORTANT: Nokia SR Linux has OpenConfig disabled by default, to enable it, log into
the SR CLI and enable it (see next slides).

• ContainerLab, gNMIc tool, TFS, etc. are already installed. In case of trouble, you might
need to destroy and redeploy ContainerLab or TFS.

• Use gNMIc to test connectivity from TFS VM to Clab VM, and to inspect the data
retrieved by SR Linux devices.

108

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Manage ContainerLab Scenarios
Deploy

cd ~/tfs-ctrl/hackfest/containerlab

$ sudo containerlab deploy --topo tfs-scenario.clab.yml

Access SR Bash

$ docker exec -it clab-tfs-scenario-srl1 bash

Access SR CLI (enables to get and set configs)

$ docker exec -it clab-tfs-scenario-srl1 sr_cli

Destroy

$ sudo containerlab destroy --topo tfs-scenario.clab.yml

109

Warning:

User: admin
Pass: NokiaSrl1!

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Activate OpenConfig in SR Linux
Enable OpenConfig data models and set as default data model:

$ docker exec -it clab-tfs-scenario-srl1 sr_cli

enter candidate

system management openconfig admin-state enable

system gnmi-server network-instance mgmt yang-models openconfig

commit stay

quit

110

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Retrieve Configurations of SR Linux with gNMIc

$ gnmic -a 172.100.100.101 -u admin -p NokiaSrl1! --skip-verify -e json_ietf get /

--path '/network-instances' > srl1-nis.json

$ gnmic -a 172.100.100.101 -u admin -p NokiaSrl1! --skip-verify -e json_ietf get /

--path '/interfaces' > srl1-ifs.json

$ gnmic -a 172.100.100.102 -u admin -p NokiaSrl1! --skip-verify -e json_ietf get /

--path '/network-instances' > srl2-nis.json

$ gnmic -a 172.100.100.102 -u admin -p NokiaSrl1! --skip-verify -e json_ietf get /

--path '/interfaces' > srl2-ifs.json

111

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Configure ContainerLab clients

$ docker exec -it clab-tfs-scenario-client{1,2} bash

ip address add 172.16.{1,2}.10/24 dev eth1

ip route add 172.16.{2,1}.0/24 via 172.16.{1,2}.1

ping 172.16.{2,1}.1 # test connectivity against remote router

ping 172.16.{2,1}.10 # test connectivity against remote client

112

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Too easy for you? Do you want more?

No problem! Here we go! ☺

• Extend the basic 2-router scenario with additional routers and clients

• Measure performance of ContainerLab using iperf

• Establish and monitor multiple parallel services

• Implement support in gNMI Driver for VLAN tags

113

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

Form the Teams

114

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Form the Teams

Advises:

- Form 2-3 member teams

- Try to have (at least) 1 member with previous experience with
TeraFlowSDN.

- Find an awesome name for your team

- Come to the front desk to add your team to the table

115

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Teams

116

Team # Team Name Member 1 Member 2 Member 3 Member 4

1

2

3

4

5

6

7

8

9

10

11

12

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0© ETSI CC-BY-4.0

Conclusion

117

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Conclusion: Protocol summary

118

NETCONF RESTconf gRPC gNMI

Data Modelling

Language

YANG YANG Protocol

Buffers

YANG / Protocol

Buffers

Transport SSH, TLS,

BEEP/TLS,

SOAP/HTTP/TLS

HTTP HTTP/2 gRPC

Encoding XML XML/JSON byte JSON/byte

Capability exchange During Session

establishment

Retrieval of Yang

modules and

capability URIs

NO Yes

Multiple datastores YES NO NO YES

(Config/State/

Operational)

Datastore Locking YES NO NO NO

Security SSH TLS TLS TLS

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Standards summary

119

Standards T-API IETF TEAS OpenROADM OpenConfig gNMI

Focus NBI Transport
SDN
Controller

NBI Transport
SDN
Controller

Dissagregated
ROADM

Router and line
card configuration

Operations and
notification of
network
elements

Data Model YANG YANG YANG YANG Protobuf

Complexity + ++ ++ ++ +

SDO ONF, OIF IETF MSA MSA -

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Standards and Open Source

120

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

Transport SDN Benefits and Challenges

121

https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

At the end of the day…

◉ A satisfaction survey will be circulated

◉ Please take 2 minutes to reply and leave us comments

◉ Your feedback is precious!

◉ Certificates of participation will be granted

◉ Make sure you are properly registered, and we know where to send
yours!

◉ And .. if you liked the TeraFlowSDN experience..

◉ Join us! Participation is open to ETSI members, non-members,

individual contributors and users… Learn how to join.

122

https://creativecommons.org/licenses/by/4.0/
https://tfs.etsi.org/#join_us

© ETSI CC-BY-4.0© ETSI CC-BY-4.0© ETSI CC-BY-4.0

Thank You!

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© ETSI CC-BY-4.0

References
RFC6020, YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF),

https://tools.ietf.org/html/rfc6020

RFC6241, Network Configuration Protocol (NETCONF), https://tools.ietf.org/html/rfc6241

Open ROADM Overview, https://0201.nccdn.net/4_2/000/000/05e/0e7/Open-ROADM-whitepaper-v2_2.pdf

RFC8040, RESTCONF Protocol, https://tools.ietf.org/html/rfc8040

Transport API (TAPI) 2.0 Overview, https://wiki.opennetworking.org/display/OTCC/TAPI+Overview

gRPC Basics – Python, https://grpc.io/docs/tutorials/basic/python.html

OpenConfig FAQ for operators, http://www.openconfig.net/docs/faq-for-operators/

ONF’s P4 Language Tutorial,
https://opennetworking.org/wp-content/uploads/2020/12/P4_D2_East_2018_01_basics.pdf

ONF’s Next generation SDN tutorial, https://github.com/opennetworkinglab/ngsdn-tutorial

This Hackfest contains slides from previous OFC 2018 SC449: Hands-on: An introduction to Writing Transport SDN
Applications by Ricard Vilalta (CTTC) and Karthik Sethuraman/Yuta Higuchi (NEC) and OFC 2018 SC448: Software
Defined Networking for Optical Networks: a Practical Introduction by Ramon Casellas (CTTC).

124

https://creativecommons.org/licenses/by/4.0/
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc6241
https://0201.nccdn.net/4_2/000/000/05e/0e7/Open-ROADM-whitepaper-v2_2.pdf
https://tools.ietf.org/html/rfc8040
https://wiki.opennetworking.org/display/OTCC/TAPI+Overview
https://grpc.io/docs/tutorials/basic/python.html
http://www.openconfig.net/docs/faq-for-operators/
https://opennetworking.org/wp-content/uploads/2020/12/P4_D2_East_2018_01_basics.pdf
https://github.com/opennetworkinglab/ngsdn-tutorial

